Эволюция Вселенной и происхождение жизни - [43]
Когда в 1667 году Ньютон вернулся в Кембридж, он начал закладывать фундамент сразу нескольких областей науки. Его метод флюксий известен сегодня как дифференциальное и интегральное исчисление. В теории света его особенно интересовала природа цвета, а используя механику, он решил древнюю задачу о движении планет. В окончательной форме результаты появились много позже. «Математические начала натуральной философии» были изданы в 1687 году, а «Оптика» — в 1704 году (рис. 10.2).
«Начала» считаются наиболее важной работой в истории науки. Основную заслугу в том, что эта работа была начата, с Ньютоном могли бы разделить Лондонское Королевское общество, основанное в 1662 году, и особенно его члены — Кристофер Рен (1632–1723), Роберт Гук и Эдмунд Галлей. Когда Рен, вступая в должность профессора астрономии Оксфордского университета, произносил речь, он заявил, что важнейшей проблемой физики того времени является объяснение законов Кеплера. Он пророчествовал, что человек, который сможет это сделать, уже родился. И оказался прав: в это время Ньютону было уже 15 лет. Рен и Гук проводили опыты с маятниками, и это навело Гука на мысль, что движение планет является суммой тангенциального движения и «притягательного движения, направленного к центральному телу».
Рис. 10.2. Обложка первого издания «Начал».
Став в 1677 году секретарем Королевского общества, Гук попытался вступить в переписку с Ньютоном, который был широко известен своими математическими талантами. Гук полагал, что темой их переписки станет его гипотеза; он писал: «Осталось понять, по какой траектории будет двигаться тело под действием силы, обратно пропорциональной квадрату расстояния. Я не сомневаюсь, что Вы при помощи своего превосходного метода сможете определить, какова эта кривая и ее свойства, и предложите физическую причину этой зависимости».
Гук не получил ответа на свое послание. Возможно, именно поставленный Гуком вопрос вдохновил Ньютона, и в начале 1680-х годов он разработал свой закон всемирного тяготения, объяснив при этом и законы Кеплера. В те годы ученые уже обсуждали возможность того, что притяжение между Солнцем и планетами ослабевает пропорционально квадрату расстояния (так называемый закон обратных квадратов). Такой вывод можно сделать, объединив формулу Гюйгенса о центростремительном ускорении с Третьим законом Кеплера. Роберту Гуку это было известно, но он не мог сказать, способна ли изменяющаяся по такому закону сила создать орбиты в соответствии с Первым и Вторым законами Кеплера (эллипсы и равные площади).
Так и не найдя возможности начать обсуждение этой проблемы с Ньютоном, Гук в августе 1684 года послал к нему юного Эдмунда Галлея. Позже Ньютон описал все это Абрахаму де Муавру: «После недолгого разговора Галлей спросил Ньютона, как он думает, по какой кривой будут двигаться планеты, если предположить, что сила их притяжения к Солнцу обратно пропорциональна квадрату расстояния от него». Сэр Исаак тут же ответил, что это будет эллипс. Доктора Галлея это очень удивило и восхитило, и он спросил, откуда это известно? И сразу же попросил показать расчеты. Сэр Исаак поискал в своих бумагах, но не нашел их и обещал, что найдет свои расчеты, обновит их и перешлет Галлею…»
Ньютон решил назвать свои лекции так — «О движении тел по орбите». Эту работу он написал в виде девятистраничного трактата («De motu» — О движении) и в ноябре переслал Галлею. Под напором Галлея он продолжал писать и спустя два года издал «Начала» (при частичной финансовой поддержке Галлея).
Одним из важнейших понятий «Начал» стало всемирное тяготение. Это естественно, ведь притяжение удерживает нас на Земле. Что-то заставляет далекую Луну обращаться вокруг Земли, а планеты — обращаться вокруг Солнца. Неужели это одна и та же сила? Мы уже рассказывали, как Гюйгенс определил, что ускорение к центру для тела, движущегося по круговой орбите, равно квадрату скорости, деленному на радиус орбиты. Чтобы доказать, что сила всемирного тяготения меняется обратно пропорционально квадрату расстояния, Ньютон сравнил ускорение к центру Земли, действующее на ее поверхности, с тем ускорением, которое Земля оказывает на Луну, удаленную на 60 земных радиусов. Гравитационное ускорение на лунной орбите должно быть в 60>2 раз меньше ускорения на поверхности Земли и равняться центростремительному ускорению Луны в направлении Земли. Зная радиус Земли, Ньютон предпринял это сравнение и подтвердил закон обратных квадратов. Великолепный результат! Из-за многократного уменьшения ускорения Луна за минуту падает настолько же, насколько за секунду падает яблоко на Земле.
Свои исследования по движению тел Ньютон обобщил в виде трех законов механики. Первое правило Галилея (известное и Декарту) было представлено как Первый закон Ньютона.
1. Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока под влиянием действующих на него сил не выйдет из этого состояния.
Под воздействием внешних сил состояние движения меняется, иными словами, тело испытывает ускорение. В своем Втором законе Ньютон утверждает следующее.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.
Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури.