Эволюция Вселенной и происхождение жизни - [23]
Таким образом, Коперник был вынужден ввести в свою модель весьма сложное «очень медленное» третье движение. Разумеется, это заметили и даже высмеяли противники новой системы: раньше Земля была неподвижной, а теперь ей требуется целых три движения — одно суточное и два годичных. В популярном тогда стишке говорилось о «тех клириках, которые думают (думают — какая нелепая шутка), что небеса и звезды вообще не вращаются […], и о том [Коперник], который, чтобы объяснить видимую картину звезд, придал Земле тройное движение».
Последователи Коперника, Кеплер и Галилей, указывали, что годичная часть третьего движения совершенно не нужна. В своем Диалоге (1632) Галилей сравнивает Землю с шаром, плавающим в сосуде с водой. Когда вы начинаете вращаться «на цыпочках», держа в руках сосуд, кажется, что шар вращается в обратную сторону относительно сосуда. Но что же происходит на самом деле? Галилео отмечал, что шар без всяких усилий со своей стороны остается неподвижным относительно своего окружения. Галилео видел в поведении Земли инерцию — понятие, введенное Ньютоном и неизвестное Копернику.
Орбита Земли иллюстрирует, насколько сложно в модели Коперника учесть наблюдаемые вариации в движении Солнца по эклиптике. Центральная точка этой круговой орбиты вращается с постоянной скоростью по маленькому кругу, центр которого вращается вокруг Солнца. Эти три круговых движения необходимы для учета изменений в годичном движении Солнца. Для объяснения всех наблюдаемых движений в Солнечной системе Копернику понадобилось более 30 окружностей, что сделало его систему такой же сложной, как и система Птолемея. Как бы то ни было, эти математические сложности, вызванные использованием равномерных круговых движений, не смогли изменить того факта, что эта модель стала прорывом к правильным законам движения планет, которые Кеплер открыл через семьдесят лет.
Астрономия в значительной степени — наука о космических расстояниях; с этой точки зрения модель Коперника в сравнении со старой моделью имела большие преимущества. Стало возможным из наблюдений установить порядок планет и определить их относительные расстояния от Солнца. Эти расстояния можно было определить в единицах расстояния от Земли до Солнца и этой новой естественной единицей (астрономическая единица) заменить радиус Земли.
В системе Птолемея расстояние до планеты определяется довольно произвольно: важно только установить размер эпицикла относительно деферента, так чтобы видимое движение планеты соответствовало наблюдаемому. Но в гелиоцентрической модели, напротив, порядок планет и их расстояния до Солнца становятся четко определенными. Не вдаваясь в детали, заметим, что расстояние Солнце-планета можно определить в момент, когда треугольник, образованный Землей, Солнцем и планетой, становится прямоугольным.
Коперник выделил Луну из группы планет и сделал ее спутником Земли. Он определил порядок и расстояния планет, как показано в табл. 5.1 (единицей служит среднее расстояние Солнце-Земля, астрономическая единица, или а. е,). Следует подчеркнуть, что, после того как круги и эпициклы совпали с наблюдениями, Коперник не обнаружил, что планеты имеют круговые орбиты. Он вычислил минимальное, среднее и максимальное расстояние каждой планеты от Солнца. Таблица показывает, что теперь максимальное расстояние «нижележащей» планеты не равно минимальному расстоянию следующей за ней «вышележащей» планеты. В отличие от того, что предполагал Птолемей, теперь между планетными орбитами было много пустого места. В системе Коперника сфера неподвижных звезд оказалась просто гигантской, поэтому годичное движение Земли никак не могло стать причиной смещения положений звезд на небе. И так оставалось вплоть до XIX века, пока эти смещения не были наконец открыты. В табл. 5.1 следует также подчеркнуть большие значения отношений максимального к минимальному расстояний для Меркурия и Марса. Это отражает сильную вытянутость их орбит, которая позднее позволит Кеплеру сделать вывод о том, что в действительности Марс движется по эллипсу. В противоположность этому, расстояния Венеры и Земли от Солнца меняются очень мало.
Мы, как и Коперник, можем заметить, что его система была менее произвольной, чем система Птолемея. Уже только это делало гелиоцентрическую систему более привлекательной. Но еще важнее, что будущие наблюдения могли проверить предсказанный порядок планет и их расстояния.
Таблица 5.1. Значения Коперника для минимального, среднего и максимального расстояния между Солнцем и планетами.
Имя Коперника связано с двумя идеями. Говоря о коперниканской революции, мы обычно имеем в виду рождение гелиоцентрической модели в 1543 году. Естественно, что процесс окончательного установления этой новой астрономической картины Солнечной системы длился в течение двух столетий. Потребовалось много наблюдений и теоретических работ, пока движение Земли не стало восприниматься столь же естественно, как ее неподвижность — в древние времена.
Но коперниканская революция породила еще и космологический принцип Коперника, утверждающий, что мы не находимся в особом или предпочтительном положении во Вселенной. Правда, сам Коперник думал, что Солнце расположено в центре Вселенной или рядом с ним, что никак не соответствует Принципу Отсутствия Центра, провозглашенному Бруно. Тем не менее изгнание из центрального неподвижного положения Земли, получившей статус обычной планеты, стало настолько крутым изменением, что оно оправдывает название «Принцип Коперника». Космолог из родного Копернику Краковского университета Кондрад Рудницки сформулировал это более современным языком: «Вселенная, наблюдаемая с любой планеты, выглядит одинаково». Сегодня мы можем заменить слова «с любой планеты» словами «из любой галактики».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.
Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури.