Эволюция Вселенной и происхождение жизни - [199]

Шрифт
Интервал

Обсуждая размерность пространства (см. главу 18), мы уже говорили, что стабильные планетные орбиты не могут существовать во вселенной, имеющей более трех пространственных измерений. Точно так же и орбиты электронов в атомах были бы нестабильными, что сделало бы невозможными химические связи, необходимые для формирования сложных органических молекул — основы жизни. В некоторых теориях предполагается, что сначала Вселенная имела больше измерений, но большинство из них свернулось еще на ранней стадии эволюции Вселенной, оставив нам три пространственных и одно временное измерение. Мы можем себе представить другие вселенные, имеющие четыре, пять или больше пространственных измерений, но жизнь, как мы ее представляем, была бы невозможна в таких экзотических мирах.

Естественные законы и универсальные постоянные.

Не только размерность пространства, но также и законы природы и значения физических постоянных оказались как раз такими, какие позволили совершиться химической эволюции от Большого взрыва до Человека. Например, если бы во время Большого взрыва весь водород превратился в гелий, то сейчас во Вселенной не было бы ни воды, ни жизни. А это случилось бы, если бы ядерная сила, связывающая протоны и нейтроны, оказалась немного сильнее, чем она есть. В нашей реальной Вселенной ядерная сила достаточно велика, чтобы связать протон и нейтрон в ядро дейтерия, но недостаточно сильна, чтобы удержать рядом два протона, превысив их электростатическое отталкивание. Но можно представить себе вселенную, в которой ядерное взаимодействие всего на 3,4 % сильнее: это стабилизировало бы систему из двух протонов, то есть позволило бы образоваться ядру >2Не. Такие легкие ядра гелия без труда рождались бы во время Большого взрыва, и почти весь водород превратился бы в гелий. В этой гипотетической вселенной не было бы соединений водорода и долгоживущих звезд, которые используют водород как топливо.

С другой стороны, если бы ядерная сила была всего на 9 % слабее, она не могла бы удержать частицы в ядре дейтерия — главном звене в цепи превращения водорода в более тяжелые элементы. Без дейтерия у нас не оказалось бы углерода, а значит, и таких соединений, как белки и нуклеиновые кислоты. Как видим, сила ядерного взаимодействия с точностью до нескольких процентов должна быть именно такой как есть, чтобы возникла жизнь.

Важность точного значения ядерной силы первым понял Фред Хойл. В 1950-х годах он показал, что реакция ядерного синтеза углерода (из трех ядер гелия) происходит эффективно только в том случае, если ядерная сила имеет вполне определенное значение. Основываясь на том, что наша форма жизни базируется на углероде, Хойл теоретически вычислил значение константы ядерного взаимодействия. Через несколько лет физики-ядерщики на основе экспериментов подтвердили, что Хойл прав: образование углерода в звездах действительно строго зависит от значения ядерной силы. Хойл продемонстрировал и другое счастливое совпадение: превращение углерода в кислород в звездах происходит не так эффективно, как образование самого углерода, что и приводит к накоплению углерода в природе. Жизни трудно было бы процветать в том в мире, где кислорода больше, чем углерода. Если существует много вселенных, то эти уникальные параметры делают нашу Вселенную более благоприятным для жизни местом, чем большинство других.

Мы уже знаем, что один из самых распространенных элементов, углерод, имеет как раз такие химические свойства, чтобы образовать четыре ковалентные связи и формировать длинные молекулы. К тому же оказалось, что самое распространенное соединение во Вселенной, Н>2O, действует как оптимальный растворитель для обеспечения биохимических реакций. Похоже, что основные возможности для полного химического арсенала жизни аккумулированы в особых свойствах углерода и воды. В принципе, эти вещества должны быть на планетах по всей Галактике.

Одним из физических факторов, важных для образования первых звезд, было слегка неоднородное распределение плотности первичного излучения и ядерной плазмы, сформировавшихся в процессе Большого взрыва. Это привело к неоднородному распределению первичных водородно-гелиевых облаков, которое затем перешло в сжатие, создавшее первые звезды — «фабрики» по производству первых тяжелых элементов, необходимых для жизни.

Кроме субатомных параметров, важных для процессов, протекающих в недрах звезд, есть еще и слабая сила гравитации — строитель космических структур. Если бы эта сила была немного слабее или немного сильнее, то формирование звезд происходило бы иначе, чем сейчас. Будь эта сила слабее, не появились бы тяжелые элементы, а будь она сильнее, звезды эволюционировали бы так быстро, что у их планетных систем не имелось бы достаточно времени, чтобы на них могла возникнуть жизнь. И вновь мы видим, что иные вселенные, с иной гравитационной постоянной, были бы непригодны для жизни.

Критическое значение для существования жизни имеет возраст Вселенной и звезд. Если бы эволюция Вселенной протекала скоротечно (скажем, за миллион лет), то жизнь не успела бы даже за-родиться. Элементы жизни — углерод и другие — сформировались в ходе ядерных реакций внутри звезд и были выброшены в межзвездные облака при взрывах звезд. И для образования следующего поколения звезд и их планет тоже требуется время. Ведь планеты типа Земли не могут появиться у звезд, протопланетные диски вокруг которых лишены сложных химических элементов. Первое поколение звезд нашей Галактики не могло иметь планет, пригодных для жизни. Накопление необходимых элементов в газовых облаках, из которых позже образовались звезды и планеты, должно было происходить достаточно быстро, но сколько именно времени это заняло — не ясно.


Рекомендуем почитать
Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Удивительная астрономия

Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.


Шерлок Холмс: наука и техника

Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури.