Эволюция Вселенной и происхождение жизни - [194]

Шрифт
Интервал

В процессе эволюции звезды ее светимость меняется. За время жизни Солнечной системы светимость Солнца возросла примерно на 30 %. Когда в прошлом Солнце грело слабее, зона жизни была ближе к нему (на корень квадратный из светимости). При альбедо 0,5 ближняя граница передвинется на 0,66 а. е., а при альбедо 0,2 верхняя граница будет равна 1,6 а. е.; но Земля все равно остается в пределах зоны. Интересно отметить, что молодая Венера была хорошим местом для жизни; а Марсу, чтобы оказаться в зоне жизни, нужно было всегда иметь сильный парниковый эффект. В будущем, когда светимость Солнца возрастет, зона жизни сдвинется наружу, постепенно захватывая Юпитер и Сатурн. Для новых экзопланет оценки зон жизни можно сделать, опираясь на приведенные выше числа, масштабируя их пропорционально квадратному корню из светимости звезды. Что это означает? Если светимость звезды больше, то зона жизни будет на большем расстоянии. Для звезды, светимость которой в 9 раз превышает светимость Солнца, зона жизни будет на расстоянии около 3 а. е.

Такое определение зоны жизни кажется очевидным, но оно исключает некоторые потенциально возможные для жизни места в Солнечной системе, такие как спутник Юпитера Европа и спутники Сатурна Титан и Энцелад. Там могут быть водные океаны с пригодными для жизни областями типа «черных курильщиков», которые не зависят от Солнца, пока существуют внутренние источники тепла. Кроме того, на холодной периферии планетной системы, за пределом классической зоны жизни, возможно наличие полностью хемотрофных форм жизни, получающих энергию от химических реакций, а не от солнечного излучения. При рассмотрении вопроса о жизни в других планетных системах нужно помнить о таких возможностях.

Второе, что необходимо для жизни, это защита от космического вакуума и от потоков высокоэнергичных частиц и космических лучей. Защитой для жизни может стать твердая оболочка, например слой льда (как на Европе), или же атмосфера и магнитосфера (как на Земле). В связи с этим возникают интересные проблемы для планет у звезд-карликов спектрального класса М. Например, светимость красного карлика Gliese 581 настолько мала, что планета, чтобы оказаться в его зоне жизни, должна располагаться чрезвычайно близко от звезды. При столь малом расстоянии под влиянием приливного эффекта суточное вращение планеты синхронизируется с ее орбитальным движением, и поэтому она всегда окажется повернута к звезде одной своей стороной (как Луна к Земле). На противоположной стороне планеты будет вечная ночь. На этой холодной стороне не слишком массивная атмосфера просто осядет в виде снега. Только толстая атмосфера с эффективной циркуляцией может спасти планету от гибели.

Спектральный тип звезды тоже имеет большое значение для развития жизни. Особенно важны три характеристики. Первая — это время пребывания звезды на главной последовательности. Звезды спектральных классов от О до А, проводящие на ней менее 2 млрд лет, не оставляют планете времени для того, чтобы жизнь смогла развиться до фотосинтеза. Вторая важная характеристика — ультрафиолетовый поток, губительный для жизни. Он особенно силен у звезд тех же спектральных классов. С другой стороны, планеты у карлика спектрального класса М имеют в своем распоряжении достаточно времени. Но если жизнь родилась на такой планете, то наряду с проблемой синхронизации вращения из-за прилива может возникнуть и третья проблема, связанная с переменностью звезды. Карлики спектрального класса М, как правило, имеют активные хромосферы и демонстрируют частые вспышки. Поэтому приемлемыми для жизни остаются только звезды спектральных классов F, G и К.

В нашей Галактике не все области одинаково хороши для жизни. В звездном гало и во внешних областях диска обилие металлов низкое, а значит, условия для формирования планет и появления жизни на них неблагоприятные. Во внутренней части Галактики много молодых высокоэнергичных звезд. Там чаще происходят вспышки сверхновых и другие катастрофические явления. Это не препятствует формированию планет, но частые эпизоды частичного или полного вымирания биосферы могут помешать нормальному развитию жизни.

Резюмируя, можно перечислить астрономические условия, которые, как мы полагаем, необходимы для жизни: температура, при которой может существовать жидкая вода; защита от вакуума и вредного излучения, а также звезда приемлемого спектрального класса, расположенная в том месте своей галактики, где достаточно много металлов и минимум катастрофических явлений.

Жизнеспособность планет типа Земли. Как найти планету с биосферой.

Как может выжить маленькая каменистая планета в бурном круговороте эпохи формирования планетной системы? Гигантская планета, довольно медленно перемещаясь по радиусу в процессе миграции II типа, с большой вероятностью должна «смести» все маленькие планеты. Гигант может поглотить их или выбросить на новые орбиты на ранней стадии формирования. Тем не менее некоторые маленькие планеты все же могут пережить эту эпоху. И, разумеется, вовсе не очевидно, что в каждой планетной системе есть планета-гигант.


Рекомендуем почитать
Можно ли забить гвоздь в космосе и другие вопросы о космонавтике

«Как попасть в отряд космонавтов?», «Что вы едите на борту космического корабля?», «Есть ли интернет на МКС?», «Плоская ли Земля?» – эти и другие вопросы постоянно задают космонавтам. Космонавт Сергей Рязанский в этой книге отвечает на вопросы, которые интересуют многочисленных любителей космонавтики.


Боги с небес

Книга известного американского астронома Эдвина Краппа отличается от подобных изданий тем, что он открывает перед читателем не загадочный мир сложной астрологической науки, пестрящей «оковами цифр и знаков», а чудо «живой астрономии», наполненной образами древней мифологии, чудесами небесного покровительства человечеству. Расшифровкой космических посланий людям занимались специальные «связные», которые у каждого народа и в каждую эпоху назывались по-своему: волхвы, звездочеты, шаманы, астрологи, гадатели, придворные астрономы. Эдвин Крапп раскрывает перед нами связь между временами и поколениями, материками и народностями, земным и небесным. Последние исследования в области истории астрономии и археологии, подкрепленные мифологическими ассоциациями, позволяют под иным углом взглянуть на культурологическое наследие нашей цивилизации, а также на ее прошлое, настоящее и будущее. [Адаптировано для AlReader].


Тунгусский метеорит и загадки кометы Галлея

В книге содержится обширный фактический материал о Тунгусском метеорите: популярное изложение истории вопроса, освещение результатов проведенных обширных исследований, перечень наиболее распространенных гипотез. В книге приводятся данные, позволяющие, как считает автор книги, дать разгадку проблемы Тунгусского феномена. Значительная часть книги посвящена тайнам кометы Галлея.


Стойкость. Мой год в космосе

Американский астронавт Скотт Келли совершил четыре полета в космос, дважды был членом многодневной американской миссии на Международной космической станции и провел на орбите в общей сложности более 500 суток. О его необычайном опыте много писали в прессе, а теперь есть возможность узнать подробности от него самого. Искренний рассказ о себе, своем детстве, взрослении рисует точный психологический портрет человека, выбирающего путь астронавта, помогает увидеть бесстрашных героев с необычного ракурса и лучше понять их мотивацию и личностные особенности.


Далекие сестры Земли

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Шерлок Холмс: наука и техника

Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури.