Эволюция Вселенной и происхождение жизни - [165]
Чтобы понять механизм происхождения жизни, мы должны выяснить: как же образовались исходные РНК-полимеры, как они выработали генетический код и способность к синтезу белка и откуда взялись рибонуклеотиды и аминокислоты? Согласно гипотезе Александра Опарина, сборка исходных полимеров должна была происходить постепенно, путем случайных, все более усложняющихся химических реакций, начавшихся от простого предшественника и продвигающихся к построению всё более сложных молекул. Все начальные строительные блоки и структуры жизни должны были образоваться в естественных физических условиях, без помощи каких-либо биологических катализаторов.
Нуклеотиды и аминокислоты были нужны в качестве строительных блоков для образования исходных полимеров, РНК-геномов и белков. Эти блоки должны были сформироваться спонтанно из своих органических предков — маленьких молекул. Наиболее важными атомами в этих предках были углерод, водород, азот, кислород, фосфор и сера. Мы уже обсуждали, как водород и химически инертный гелий родились во время Большого взрыва. Остальные элементы образовались в звездах, которые затем выбросили их в межзвездную среду, из облаков которой сформировались следующие поколения звезд с планетами. Известно, что эти относительно обильные элементы при подходящих энергетических условиях могут вступать в реакцию с образованием небольших восстановленных соединений, таких как синильная кислота (HCN), аммиак (NH>3), метан (СН>4) и формальдегид (СНОН). Термин «восстановленный» означает, что электроны, обычно с атомами водорода, присоединяются к центральному элементу, и при этом огромное количество энергии запасается в соединениях, превращая их в удобных предшественников для дальнейших химических реакций.
Экспериментальные исследования предбиологического синтеза органических соединений начались в 1952–1955 годах, когда Гарольд Юри (1893–1981) вместе со своим студентом Стэнли Миллером (1930–2007) изучали, как элементы жизни (С, Н, N, О, Р, S) могут превращаться в биологические молекулы в смоделированных условиях ранней атмосферы Земли. Предполагалось, что атмосфера гигантской газовой планеты Сатурн представляет собой пример исходного газового состава Солнечной системы и что древняя атмосфера Земли была похожа на нее, то есть состояла из воды, метана, аммиака и водорода. Поэтому в лаборатории изучались реакции этих газов в разных смесях с другими газами. Эта газовая смесь находилась в стеклянной колбе над слоем воды, а в качестве источника энергии были использованы электрические разряды, моделирующие молнии в древней атмосфере (рис. 30.3).
Рис. 30.3. (а) Миллер и Юри в 1953 году получили аминокислоты, возбуждая электрическими разрядами смесь водяного пара, метана, аммиака и других газов, (б) Этот эксперимент неоднократно повторялся. На фото показана аналогичная аппаратура в Исследовательском центре им. Дж. С. Эймса, НАСА. С разрешения NASA.
К удивлению ученых, в этих условиях за несколько дней в ходе различных реакций родилось большое разнообразие органических соединений, включая несколько различных аминокислот. Выход полученных продуктов зависел от состава смеси газов. Для эффективного производства органики требовалось наличие восстановленных (относительно воды) газов, таких как метан или молекулярный водород. Если в качестве источника углерода использовался окисленный углерод СО., или же в реакции участвовал молекулярный кислород, то получить органический продукт не удавалось.
Результат эксперимента Миллера-Юри был поразительным. Он четко доказал, что синтез органических соединений может происходить довольно легко из неорганического вещества. Однако гипотеза о первичной атмосфере Земли, по-видимому, оказалась ошибочной. Сейчас есть свидетельства того, что «первая» атмосфера, богатая водородом, была сорвана в результате мощной бомбардировки или же сильным солнечным ветром. «Вторая» атмосфера могла возникнуть из вулканических газов и летучих веществ, принесенных кометами. На это указывает то, что изотопный состав благородных газов в современной атмосфере совпадает с тем, что дает распад радиоактивных элементов в земной коре, и отличается от изотопного состава межзвездных облаков, из которых должна была бы сформироваться Земля. «Вторая» атмосфера в основном состояла из CO>2 N>2 и Н>2O с примесью СО и Н>2. Но эти нейтральные газы, как было сказано, не давали в эксперименте органических продуктов.
Впрочем, производство аминокислот на ранней стадии зарождения жизни — не проблема, так как их синтез мог происходить в любом месте, где маленькие восстановленные соединения вступают в реакцию при наличии источника энергии. Такие условия складывались, например, в геотермальных областях под морским дном, где морская вода проникала вглубь коры и растворяла минералы, углерод и серу. Гидролиз должен был обеспечить достаточную восстановительную энергию, а высокая температура и давление — способствовать восстановлению соединений. Затем восстановленные соединения вместе с горячей водой поднимались на морское дно в особых местах выхода (похожих на современные гидротермальные источники на подводном Срединно-Атлантическом хребте). Сульфиды вступали в реакцию с ионами железа, никеля и других металлов, насыщавших древнюю морскую воду, и образовывали сульфидные осадки, которые скапливались в пористых структурах, похожих на черных курильщиков, существующих в подобных местах в наше время. Сульфиды металлов — активные катализаторы различных химических реакций. Эти геотермальные источники могли быть эффективными инкубаторами маленьких органических соединений, включая аминокислоты (рис. 30.4).
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.
Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури.