Эволюция Вселенной и происхождение жизни - [123]
Теоретики ожидали, что наиболее заметные пятна с избытком излучения на микроволновом небе должны иметь угловой размер Луны. Легко понять, что размер таких пятен зависит от геометрии Вселенной. Мы уже объясняли в главе 15, что угол, под которым виден далекий объект, зависит от кривизны пространства. В сферическом пространстве объект кажется больше, чем в плоской эвклидовой Вселенной, а в гиперболическом пространстве он кажется меньше. Таким образом, измеряя размер пятен микроволнового излучения, можно точно измерить общую геометрию (рис. 24.6).
Рис. 24.6. Мельчайшие вариации температуры космического фонового излучения, измеренные в эксперименте «Бумеранг» на участке неба размером 10 x 20 квадратных градусов. Характерный угловой размер неоднородностей, около 1°, свидетельствует, что пространственная геометрия Вселенной плоская. Credit: The Boomerang Collaboration.
Первые сведения о существовании пятен предпочтительного размера поступили в 1993–1995 годах от сотрудников Института Макса Планка (Германия) и Принстонского университета (США), наблюдавших это на телескопе в г. Саскатун (Канада). А убедительные измерения были проведены в 1998 году с аэростатов: экспериментом Boomerang (Balloon Observations of Millimetric Extragalactic Radiation And Geophysics, Баллонные наблюдения миллиметрового внегалактического излучения и решение задач геофизики) руководили А. Ланге (Калифорнийский технологический институт) и П. де Бернардис (Римский университет), а экспериментом Maxima (Millimeter-wave Anisotropy Experiment Imaging Array, Эксперимент по картированию анизотропии в микроволновом диапазоне) — П. Ричардс (Калифорнийский университет в Беркли). Эти наблюдения показали, что предпочтительный размер пятен фонового излучения соответствует плоской Вселенной. Наконец, космическая обсерватория WMAP (большой коллектив под руководством Чарлза Беннетта из Годдардовского центра космических полетов и Университета Джонса Гопкинса) подтвердила предыдущие результаты с более высокой точностью и измерила параметр Ω = 1,02 ± 0,02. Значение Ω = 1 соответствует плоской Вселенной, Ω > 1 говорит о сферическом пространстве, а Ω <1 указывает на гиперболическую геометрию. Таким образом, наше пространство должно быть почти точно эвклидовым, и любое отклонение от плоскостности — очень малым (рис. 24.7).
Рис. 24.7. Сравнение наилучшей космологической модели с бесконечной протяженностью и плоской геометрией (непрерывная линия) с измерениями космического микроволнового фонового излучения, полученными космической обсерваторией WMAP и другими приборами (точки с «усами» ошибок). Угловой масштаб вариаций указан в верхней части рисунка. Источник: NASA.
Значительная часть первых 100 000 лет космической истории прошла при доминировании излучения. Вселенная была иной и очень простой: ее заполнял однородный газ, всюду нагретый до одинаково высокой температуры. По мере расширения Вселенной температура и плотность газа снижались. Постепенно эпоха, когда всем управляло излучение, подходила к концу. Но если отправиться в прошлое, к самому началу, когда после Большого взрыва прошло всего несколько минут, то температура в то время была выше» чем в центре Солнца. Поражает воображение, что тогда по всей Вселенной происходили ядерные реакции, похожие на те, что в наши дни генерируют энергию Солнца. Слияние протонов и нейтронов рождало ядра дейтерия, которые после столкновений друг с другом и протонами превращались в гелий.
Количество образовавшегося гелия в первую очередь зависит от соотношения числа нейтронов и протонов. Через 100 секунд после Большого взрыва, когда температура опустилась до миллиарда градусов, на каждые 6 нейтронов было 42 протона. Эти шесть нейтронов соединялись с шестью протонами и образовывали шесть ядер дейтерия, которые затем превращались в три ядра гелия. В результате получалось 36 ядер водорода (протонов) на каждые 3 ядра гелия. Относительные доли гелия и водорода (по массе) составили при этом 4 х 3/48 = 25 % для гелия и 36/48 = 75 % для водорода (поскольку ядра Не вчетверо тяжелее ядер H). По истечении 200 секунд после Большого взрыва, когда температура упала до 700 млн К, реакция синтеза гелия закончилась, и это соотношение гелия и водорода осталось неизменным во всех частях Вселенной.
Давайте продвинемся еще дальше в прошлое. С момента Большого взрыва до наших дней прошло 14 млрд лет, первые атомы родились через 400 000 лет, а весь гелий образовался примерно к концу третьей минуты. А в течение первой секунды Вселенная состояла практически из одинакового количества вещества и антивещества. Современный мир почти весь из вещества, тогда как частицы антивещества очень редки и короткоживущи. Когда сталкиваются частица и античастица, обе они исчезают — аннигилируют, превращаясь в излучение. В современном мире нелегко быть античастицей: притаившиеся в каждом углу частицы готовы в момент разделаться с античастицей.
Как же тогда античастицы могли существовать в течение первой секунды? Ответ состоит в том, что излучение тогда было настолько ярким и энергичным, что новые пары частица-античастица постоянно рождались из квантов излучения. Этот процесс противоположен разрушению пар частица-античастица. Противоположные процессы возможны, так как материя и энергия взаимозаменяемы в соответствии с формулой Эйнштейна Е = mс
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.
Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури.