Эволюция физики - [9]
Еще одна нить
У впервые изучающих механику создается впечатление, что все в этой ветви науки просто, основательно и сохраняется на все времена. Едва ли кто-нибудь подозревал о существовании новой важной руководящей идеи, которая никем не была замечена в течение трех столетий. Эта оставшаяся вне поля зрения идея связана с одним из фундаментальных понятий механики — с понятием массы.
Вернемся снова к идеализированному эксперименту, а именно: к тележке на совершенно гладкой поверхности. Если тележка вначале находится в покое, а затем получает толчок, она будет двигаться прямолинейно и равномерно с определенной скоростью. Предположим, что воздействие силы на покоящуюся тележку можно по желанию повторять сколько угодно раз; следовательно, механизм, производящий толчки, действует каждый раз одинаково и возбуждает одинаковую силу, действующую на одну и ту же тележку. Однако, сколько бы ни повторялся эксперимент, конечная скорость тележки будет всегда одна и та же. Но что случится, если эксперимент изменится, если раньше тележка была пустая, а теперь она нагружена? Нагруженная тележка будет иметь меньшую конечную скорость, чем пустая. Вывод таков: если одна и та же сила действует на два различных тела, причем оба вначале покоятся, то результирующие скорости будут неодинаковыми. Мы говорим, что конечная скорость зависит от массы тела, она меньше, если масса тела больше.
Поэтому мы знаем, по крайней мере в теории, как определить массу тела или, точнее, как определить, во сколько раз одна масса больше другой. Пусть одинаковые силы действуют на две покоящиеся массы. Найдя, что скорость первой массы в три раза больше, чем скорость второй, мы заключаем, что первая масса в три раза меньше второй. Конечно, это не очень удобный путь определения отношения двух масс. Тем не менее мы легко можем представить, что это можно сделать либо указанным, либо аналогичным путем, основанным на применении закона инерции.
Как же мы фактически определяем массу на практике? Конечно, не таким методом, какой только что описан. Каждый знает, каков правильный ответ. Мы определяем ее посредством взвешивания на весах.
Обсудим подробнее два различных пути определения массы.
Первый эксперимент не имеет ничего общего с тяжестью, притяжением к Земле. Тележка, получив толчок, движется по абсолютно гладкой горизонтальной плоскости. Сила тяжести, заставляющая тележку оставаться на плоскости, не изменяется и не играет никакой роли в определении массы. Это определение массы отличается от взвешивания. Мы никогда не могли бы применять весы, если бы Земля не притягивала тела, если бы не существовала тяжесть. Различие между обоими определениями масс состоит в том, что первое никак не связано с существованием силы тяжести, в то время как второе целиком основано на ее существовании.
Мы спрашиваем: если мы определяем отношение двух масс обоими путями, описанными выше, то получаем ли мы одинаковый результат? Ответ, данный экспериментом, совершенно ясен. Результаты точно одинаковы! Этот вывод нельзя было бы предугадать: он основывается на наблюдении, а не на рассуждении. Назовем, ради простоты, массу, определенную первым путем, инертной массой, а массу, определенную вторым путем, тяжелой массой. В нашем мире они равны, но мы легко могли бы представить себе случай, когда они были бы разными. Немедленно возникает другой вопрос: является ли это равенство обеих масс чисто случайным или же оно имеет более глубокий смысл? С точки зрения классической физики ответ таков: равенство обеих масс случайно, и нет никакого смысла придавать этому факту большое значение. Ответ современной физики совершенно противоположен: равенство обеих масс имеет фундаментальный смысл и составляет новую, весьма существенную руководящую идею, ведущую к более глубокому познанию мира. Действительно, это была одна из самых важных идей, из которых развивалась так называемая общая теория относительности.
Мы не очень высоко оцениваем детективную повесть, если в ней загадочные события сводятся к простому случаю. Конечно, нас больше удовлетворила бы повесть, в которой все объяснялось бы рационально. Точно так же и теория, которая дает объяснение равенства тяжелой и инертной масс, превосходит теорию, трактующую их равенство как некоторую случайность, конечно, если обе эти теории одинаково удовлетворяют наблюденным фактам.
Так как это равенство инертной и тяжелой масс было фундаментальной посылкой для формулировки теории относительности, мы остановимся здесь подробнее на ее проверке. Какие эксперименты убедительно доказывают, что обе массы одинаковы? Ответ заключается в старом эксперименте Галилея, в котором он бросал тела различной массы с башни. Он заметил, что время, которое требовалось для падения, было всегда одинаково, т. е. движение падающего тела не зависит от массы. Чтобы связать этот простой, но чрезвычайно важный экспериментальный результат с наличием равенства обеих масс, необходимы более сложные рассуждения.
Поддаваясь действию внешней силы, покоящееся тело приходит в движение и достигает некоторой скорости. Оно уступает действию силы более или менее легко, соответственно его инертной массе, сильнее сопротивляясь изменению движения тогда, когда масса велика, чем тогда, когда она мала. Не претендуя на строгость, мы можем сказать: готовность, с какою тело отзывается на воздействие внешней силы, зависит от его инертной массы. Если бы Земля притягивала все тела с одинаковой силой, то самая большая масса должна была бы двигаться медленнее при падении, чем любая другая. В действительности же все тела падают одинаково. Это означает, что сила, с которой Земля притягивает различные массы, различна. Так, Земля, притягивая камень с некоторой силой, ничего не знает о его инертной массе. «Призывная» сила Земли зависит от тяжелой массы. «Ответное» движение камня зависит от инертной массы. Так как «ответное» движение всегда одинаково — все тела падают с одной и той же высоты одинаково, — то отсюда вытекает, что тяжелая и инертная массы равны.
В 1955-м году британский философ, логик и математик Бертран Рассел вместе с великим физиком А. Эйнштейном издал серию работ, посвященных изучению возможных путей решения мировых конфликтов. Заключительную часть работы подписали все великие ученые мира. Этот текст стал своего рода итогом философских исканий двух великих ученых-атеистов. В предлагаемое издание включены лучшие статьи ученых, написанных в самый разгар «холодной войны», которые посвящены победе разума над оружием. В формате PDF A4 сохранен издательский макет книги.
Чтобы дать верные ответы на фундаментальные вопросы о Вселенной, понадобились века и смелость нескольких ученых. Николай Коперник в трактате «О вращении небесных сфер», Галилео Галилей в «Диалоге о двух главнейших системах мира», Иоганн Кеплер в «Гармонии мира», Исаак Ньютон в «Математических началах натуральной философии» и Альберт Эйнштейн в своих многочисленных статьях о принципе относительности открыли современникам глаза на то, как устроен небесный свод и что происходит за пределами видимости телескопа.
Осенью 1922 года Альберт Эйнштейн предпринял путешествие по Дальнему и Ближнему Востоку длиной почти полгода. На нить его сложного маршрута были нанизаны Гонконг и Сингапур, две короткие остановки в Китае, многочисленные лекции по всей Японии, почти двухнедельное пребывание в Палестине и трехнедельное – в Испании. Под этой обложкой приводится полный текст дневника, который физик вел на протяжении поездки. Сделанные наскоро записи отражают соображения автора о науке, философии, искусстве и политике, а также сиюминутные впечатления и отвлеченные размышления об актуальных событиях.
Бог не играет в кости… (Альберт Эйнштейн) Известный главным образом как создатель специальной и общей теории относительности, Альберт Эйнштейн стал, пожалуй, самым знаменитым ученым XX века, воплощением человеческого гения. Он коренным образом изменил наши взгляды на материю, пространство и время. Мы в благоговейном восхищении и растерянности стоим перед фигурой этого человека, чьи мысли лежат за пределами нашего разума, чей вклад в развитие науки и цивилизации по-настоящему могут оценить считанные единицы. Но существует и другая сторона личности Альберта Эйнштейна.
Авторы этой книги — всемирно известные ученые, лауреаты Нобелевской премии. Бертран Рассел — британский ученый, внесший неоценимый вклад в математическую логику, историю философии и теорию познания. Рассел считается одним из основателей английского неореализма, а также неопозитивизма. Альберт Эйнштейн, помимо своих выдающихся работ по физике, много писал о проблемах социологии и политики, а также всю жизнь живо интересовался вопросами философии. Оба ученых довольно скептически относились ко многим сторонам развития современного мира; не случайно Эйнштейн вопрошал: «Сумасшедший я или все вокруг меня?».
Никола Тесла – известный изобретатель, инженер, физик. Опытам Теслы приписывают связь с проблемой Тунгусского метеорита, «эксперименту Филадельфия» – превращения большого военного корабля США со всей его командой в невидимый объект и т. п. Считается, что Тесла имел прямое или косвенное отношение ко многим загадкам XX века. Помимо изобретательства Тесла живо интересовался проблемами развития мира в целом, написал ряд работ по актуальным вопросам политики и философии. Альберт Эйнштейн – выдающийся физик-теоретик, лауреат Нобелевской премии по физике 1921 года, общественный деятель-гуманист.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.