Эволюция физики - [13]
Для идеализированного эксперимента мы можем вообразить, что некто научился полностью исключать трение, которое всегда сопровождает движение. Он решает применить свое открытие к конструкции нового аттракциона — волнообразной горки и должен найти, как построить ее. Вагон должен пробежать вверх и вниз от своей исходной точки, скажем, на высоте 30 м над уровнем земли. Учась на опыте и ошибках, он скоро узнает, что может следовать очень простому правилу: он может достроить свою горку любой формы, какую пожелает, при условии, что ни одна точка его дорожки не лежит выше исходной. Если вагон будет двигаться без трения до самого конца горки, то на своем пути он может достигнуть высоты в 30 м столько раз, сколько наш конструктор пожелает, но никогда эта высота не может быть превзойдена. На реально выполнимой горке начальная высота никогда не может быть достигнута вагоном из-за трения, но наш воображаемый инженер не нуждается в рассмотрении последнего.
Проследим за движением на идеализированной горке (рис. 18) идеализированного вагона, начинающего катиться вниз от исходной точки. Когда он движется, его расстояние от земли уменьшается, но его скорость увеличивается. Это предложение на первый взгляд напоминает нам урок по языку: «У меня нет ни одного карандаша, но у вас есть шесть апельсинов». Однако оно не так глупо. Нет никакой связи между тем, что я не имею ни одного карандаша, а вы имеете шесть апельсинов, но существует очень реальное соотношение между расстоянием вагона от земли и его скоростью. Мы можем точно подсчитать скорость вагона в любой момент, если мы знаем, на какой высоте над землей он находится; мы вынуждены, однако, опустить здесь этот подсчет из-за его количественного характера, лучше всего выражаемого математической формулой.
Рис. 18
В наивысшей точке скорость вагона равна нулю, а высота — 30 м от земли. В самой низкой точке расстояние от земли равно нулю, но скорость вагона наибольшая. Эти факты можно выразить другими словами. В наивысшей точке у вагона есть потенциальная энергия, но нет энергии движения — кинетической энергии. В самой низкой точке у вагона наибольшая кинетическая энергия, но нет никакой потенциальной энергии.
Во всех промежуточных положениях, в которых имеется и некоторая скорость, и некоторое возвышение над землей, вагон имеет и кинетическую, и потенциальную энергии. Потенциальная энергия увеличивается с поднятием, между тем как кинетическая энергия становится больше по мере того, как возрастает скорость. Принципы механики достаточны для того, чтобы объяснить движение. В математической формуле содержатся два выражения энергии, каждое из которых при движении меняется, хотя сумма их не изменяется. Таким образом, возможно строго математически ввести понятия потенциальной энергии, зависящей от положения, и кинетической энергии, зависящей от скорости. Введение обеих величин, конечно, произвольно и оправдывается лишь удобством. Сумма двух величин остается неизменной и называется константой движения. Полную энергию, кинетическую плюс потенциальную, можно сравнить, например, с деньгами, которые сохранялись неизменными по величине, но непрерывно обменивались по твердому курсу то на одну валюту, то на другую, скажем на доллары, фунты и обратно.
На реальной горке (рис. 19), при движении по которой трение препятствует вагону вновь подняться до высоты исходной точки, имеет место непрерывный взаимообмен между кинетической и потенциальной энергиями. Однако здесь сумма их не остается постоянной, а становится все меньше и меньше. Теперь необходимо сделать важный и смелый шаг — связать между собой механический и тепловой аспекты движения. Значение следствий и обобщений, сделанных из этого шага, будет видно из дальнейшего.
Рис. 19
В этом случае в рассмотрение вовлекается нечто большее, чем кинетическая и потенциальная энергии, а именно: теплота, создаваемая трением. Соответствует ли эта теплота уменьшению механической, т. е. кинетической и потенциальной, энергии? Новое предположение неизбежно. Если теплоту можно рассматривать как форму энергии, то, может быть, сумма всех трех энергий — теплоты, кинетической и потенциальной энергий — остается постоянной. Не одна теплота, а теплота и другие формы энергии, взятые вместе, неразрушимы, подобно субстанции. Это похоже на то, как если бы человек, обменивая свои доллары на фунты, должен был из тех же денег заплатить франками за комиссию по обмену; общая сумма денег тоже сохраняется, так что сумма долларов, фунтов и франков представляет собой определенную величину, которую можно установить соответственно определенному курсу обмена.
Прогресс науки разрушил старое понятие теплоты как субстанции. Мы пытаемся создать новую субстанцию, энергию, одной из форм которой является теплота.
Мера превращения
Меньше 100 лет назад Майер ввел, а Джоуль экспериментально подтвердил новую идею, которая привела к понятию теплоты как формы энергии. Удивительно, что почти все фундаментальные работы о природе теплоты были сделаны физиками-непрофессионалами, людьми, которые рассматривали физику исключительно как свое любимое хобби. Это были широкообразованный шотландец Блэк, немецкий врач Майер и американский предприниматель граф Румфорд, впоследствии живший в Европе, где он занимался различной деятельностью и, в частности, был военным министром Баварии. Был среди них и английский пивовар Джоуль, проделавший в свободное время ряд наиболее важных экспериментов, касающихся сохранения энергии.
В 1955-м году британский философ, логик и математик Бертран Рассел вместе с великим физиком А. Эйнштейном издал серию работ, посвященных изучению возможных путей решения мировых конфликтов. Заключительную часть работы подписали все великие ученые мира. Этот текст стал своего рода итогом философских исканий двух великих ученых-атеистов. В предлагаемое издание включены лучшие статьи ученых, написанных в самый разгар «холодной войны», которые посвящены победе разума над оружием. В формате PDF A4 сохранен издательский макет книги.
Чтобы дать верные ответы на фундаментальные вопросы о Вселенной, понадобились века и смелость нескольких ученых. Николай Коперник в трактате «О вращении небесных сфер», Галилео Галилей в «Диалоге о двух главнейших системах мира», Иоганн Кеплер в «Гармонии мира», Исаак Ньютон в «Математических началах натуральной философии» и Альберт Эйнштейн в своих многочисленных статьях о принципе относительности открыли современникам глаза на то, как устроен небесный свод и что происходит за пределами видимости телескопа.
Осенью 1922 года Альберт Эйнштейн предпринял путешествие по Дальнему и Ближнему Востоку длиной почти полгода. На нить его сложного маршрута были нанизаны Гонконг и Сингапур, две короткие остановки в Китае, многочисленные лекции по всей Японии, почти двухнедельное пребывание в Палестине и трехнедельное – в Испании. Под этой обложкой приводится полный текст дневника, который физик вел на протяжении поездки. Сделанные наскоро записи отражают соображения автора о науке, философии, искусстве и политике, а также сиюминутные впечатления и отвлеченные размышления об актуальных событиях.
Бог не играет в кости… (Альберт Эйнштейн) Известный главным образом как создатель специальной и общей теории относительности, Альберт Эйнштейн стал, пожалуй, самым знаменитым ученым XX века, воплощением человеческого гения. Он коренным образом изменил наши взгляды на материю, пространство и время. Мы в благоговейном восхищении и растерянности стоим перед фигурой этого человека, чьи мысли лежат за пределами нашего разума, чей вклад в развитие науки и цивилизации по-настоящему могут оценить считанные единицы. Но существует и другая сторона личности Альберта Эйнштейна.
Авторы этой книги — всемирно известные ученые, лауреаты Нобелевской премии. Бертран Рассел — британский ученый, внесший неоценимый вклад в математическую логику, историю философии и теорию познания. Рассел считается одним из основателей английского неореализма, а также неопозитивизма. Альберт Эйнштейн, помимо своих выдающихся работ по физике, много писал о проблемах социологии и политики, а также всю жизнь живо интересовался вопросами философии. Оба ученых довольно скептически относились ко многим сторонам развития современного мира; не случайно Эйнштейн вопрошал: «Сумасшедший я или все вокруг меня?».
Никола Тесла – известный изобретатель, инженер, физик. Опытам Теслы приписывают связь с проблемой Тунгусского метеорита, «эксперименту Филадельфия» – превращения большого военного корабля США со всей его командой в невидимый объект и т. п. Считается, что Тесла имел прямое или косвенное отношение ко многим загадкам XX века. Помимо изобретательства Тесла живо интересовался проблемами развития мира в целом, написал ряд работ по актуальным вопросам политики и философии. Альберт Эйнштейн – выдающийся физик-теоретик, лауреат Нобелевской премии по физике 1921 года, общественный деятель-гуманист.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.