Евклидово окно - [58]

Шрифт
Интервал

>Потеха в метро

С отменой одновременности возникает относительность времени и пространства. Чтобы убедиться в этом, достаточно лишь заметить, что для измерения длины чего угодно нам необходимо сначала отметить концевые точки измеряемого объекта, а затем приложить к нему мерную линейку. Если объект по отношению к нам покоится, эта задача тривиальна. А если объект движется, потребуется промежуточный шаг. Мы могли бы, например, отмерить две концевые точки на неподвижном объекте — на покоящемся листе бумаги, скажем, пока объект перемещается вдоль этого листа. Затем, как и в первом случае, можно приложить линейку и померить расстояние между двумя нашими отметками. Однако делать эти отметки нам придется — ох уж это гнусное словечко! — одновременно. Если же мы ошибемся и сделаем одну отметку раньше второй, конец нашего объекта переместится на некоторое расстояние и полученные размеры не будут истинными. К сожалению, когда мы производим то, что считаем одновременными замерами, человек, движущийся вместе с измеряемым объектом, таковыми их считать не станет. Он обвинит нас в том, что мы отметили один конец прежде другого и тем самым получили неверный результат. Это означает, что у объектов нет длин в абсолютном смысле слова. Их длина зависит от наблюдателя. А это уже совсем иная геометрия.

Часто говорят, что в теории относительности движущиеся объекты воспринимаются как сжатые в направлении их движения. Это означает, что объект, измеряемый наблюдателем, считающим объект движущимся, будет воспринят как более короткий, нежели в случае наблюдателя, который считает объект неподвижным. Эйнштейн обнаружил аналогичные аномалии и в поведении времени. Движущиеся относительно друг друга наблюдатели не договорятся о длинах или интервалах времени или о том, сколько времени прошло. Подобно пространственным, и временные промежутки не имеют абсолютного значения.

Время, которое наблюдатель отмеряет между двумя событиями, находясь на одном месте, — что в его системе отсчета есть фиксированная точка пространства, — называется собственным временем. Любой другой наблюдатель, находящийся в движении (с постоянной скоростью) относительно первого, воспримет временной интервал между двумя событиями как больший. Поскольку относительно себя самих мы всегда находимся в покое, время нашей жизни, измеряемое другими, всегда дольше, нежели его воспринимаем мы сами (фактор общего ускорения жизни в расчет принимать не будем). Другим кажется, что наши часы отстают. Но мы, увы, умрем по сигналу внутреннего таймера, который движется вместе с нами. В специальной теории относительности трава на соседской лужайке и впрямь зеленее.

Что это означает применительно к законам движения? В специальной теории относительности объекты все еще подчиняются первому закону Ньютона: они движутся по прямой, если на них не действует внешняя сила. Наблюдатели могут не соглашаться в том, какой длины тот или иной сегмент этой самой прямой, — но не в том, что она, в принципе, прямая. Однако это пока и не «релятивистская формулировка» первого закона: в теории относительности для разных наблюдателей пространство и время по-разному взаимодействуют друг с другом. Для того, чтобы и пространство, и время оказались охвачены одной теорией, понятия геометрии необходимо видоизменить.

Вместо точек в пространстве и времен событий нам придется формализовать понятие события, иными словами — ввести точки в четырех измерениях пространства-времени. Мы теперь говорим не о траекториях в пространстве, а о мировых линиях в пространстве и времени. Отныне у нас не расстояния, а комбинация временно́го интервала и пространственных расстояний между событиями. А вместо прямых — геодезические линии, определяемые (по техническим причинам) как кратчайшие или длиннейшие мировые линии, соединяющие два события[233]. Вот вам типичный пример события: автор этой книги сидит в определенной точке пространства, т. е. за своим столом, в определенное время. Типичная мировая линия: писатель торчит за своим столом по многу часов подряд. Эта конкретная мировая линия имеет переменную временну́ю координату и постоянную пространственную. Такое положение дел для мировых линий допустимо. «Траектория» в пространстве у нашего писателя — скучная фиксированная точка, зато в пространстве-времени мировую линию он все-таки прочерчивает, в точности так же, как поднимающийся лифт, у которого координаты восток-запад не меняются, а вот координата высоты — переменна. Расстояние между двумя точками в пространстве-времени на этой мировой линии отличается от нуля, хотя расстояние, пройденное в пространстве, равно нулю, а все потому, что эти точки разнесены во времени.

Чтобы разобраться в том, как перевести первый закон Ньютона на релятивистский язык, предположим, что некоторому объекту предстоит переместиться от Алексея из точки времени нуль по его часам к Николаю с точкой времени одна секунда по его часам — такое с объектами происходит довольно часто. Какова будет траектория этого объекта, если на него не воздействуют внешние силы? На языке относительности два рассматриваемых события имеют координаты (пространство = местоположение Алексея, время = нуль) и (пространство = местоположение Николая, время = единица). Допустим, мальчишки покоятся относительно друг друга и часы у них синхронизированы; тогда объект двинется по прямой с некоторой постоянной скоростью, необходимой для того, чтобы успеть добраться от Алексея к Николаю за одну секунду по их часам. Такова мировая линия свободного объекта в специальной теории относительности.


Еще от автора Леонард Млодинов
Кратчайшая история времени

Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.


Высший замысел

Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.


Великий замысел

Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.


(Нео)сознанное. Как бессознательный ум управляет нашим поведением

Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.


Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства

Два фактора – прямохождение и зарождение мышления – когда-то стали мощным толчком для эволюции нашего вида. Посудите сами: всего пару миллионов лет назад мы жевали коренья и только учились ходить прямо, а теперь управляем самолетами, шлем мгновенные сообщения и исследуем воду на Марсе.Леонард Млодинов – с его великолепным чувством юмора и даром объяснять сложные вещи простым языком – приглашает читателей всех возрастов в увлекательное путешествие по истории нашей цивилизации.


Стивен Хокинг. О дружбе и физике

Стивен Хокинг был одним из наиболее влиятельных физиков современности, и его жизнь затронула и отчасти поменяла жизни миллионов людей. Леонард Млодинов обращается к тем двум десятилетиям, в которые он был коллегой и другом ученого, чтобы нарисовать его портрет – уникальный и очень личный. Он знакомит с Хокингомгением, ломающим голову над загадками Вселенной и всего мироздания и в конце концов формулирующим смелую теорию об излучении черных дыр, которая заставила космологов и физиков посмотреть на проблему происхождения космоса с абсолютно нового угла.


Рекомендуем почитать
Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.