Евклидово окно - [38]
Вроде бы малое изменение простой аксиомы — постулата параллельности, однако его хватило, чтобы породить волну, прокатившуюся по всему корпусу евклидовых теорем и поменявшую каждую, что описывала форму пространства. Словно Гаусс вынул стекло из евклидова окна и заменил его на искажающую линзу.
Ни Гауссу, ни Лобачевскому, ни Бойяи не удалось выработать простой способ наглядно иллюстрировать этот новый вид пространства. Это получилось у Эудженио Бельтрами и — попроще — у Анри Пуанкаре, математика, физика, философа и двоюродного брата будущего президента Франции Раймона. И тогда, и ныне Анри — менее известный Пуанкаре, но, как и его кузен, умел ввернуть словцо. «Математиками рождаются, а не становятся», — писал Пуанкаре. Так родилось это клише, и Анри прочно закрепил за собой место в народном сознании. А вот труд Анри 1880 года куда менее известен вне академических кругов — в этой работе он определил четкую модель гиперболического пространства[171].
Создавая свою модель, Пуанкаре заменил базовые элементы типа прямой и плоскости вещественными объектами, после чего перевел аксиомы гиперболической геометрии в эти новые термины. Допустимо переводить неопределенные термины пространства как кривые или поверхности — или даже как разновидности еды, если при этом смысл, который им сообщается применимыми к ним постулатами, хорошенько определен и непротиворечив. Можно смоделировать неевклидову плоскость как поверхность зебры, считать волосяные луковицы на ее шкуре точками, а полосы — линиями, если нам так хочется, покуда такой перевод не противоречит аксиомам. Например, вспомним первый постулат Евклида применительно к пространству зебры:
1. От всякой волосяной луковицы до всякой волосяной луковицы можно провести кусок полосы.
Этот постулат в пространстве зебры недействителен: у полос зебры есть ширина, и полосы эти размещаются на животном в строго определенном направлении. Между двумя волосяными луковицами, расположенными вдоль какой-нибудь полосы, но смещенными от нее в стороны, не получится провести кусок полосы. Зебр в модели Пуанкаре не было. Зато она была похожа на блин.
Вот как устроена Вселенная Пуанкаре: вместо бесконечной плоскости — конечный диск, вроде блина, но бесконечно тонкий и с идеальной круговой кромкой. «Точки» — такие штуки, которые считались точками со времен Декарта: местоположения, вроде кристалликов мелкого белого сахара. Линии Пуанкаре — вроде изогнутых бурых следов от сковородки. Если же говорить технически, эти линии — «любые дуги окружностей[172], пересекающие границу диска под прямыми углами». Чтобы не путать их с линиями, которые нам подсказывает интуиция, станем называть их линиями Пуанкаре.
Собрав эту физическую картинку, Пуанкаре должен был придать смысл применимым к ней геометрическим понятиям. Одним из важнейших оказалась конгруэнтность — то самое докучливое свойство фигур, которое Евклид предписал нам проверять путем наложения. В своем четвертом «общем замечании» Евклид писал:
4. И совмещающиеся друг с другом равны между собой.
Как мы уже говорили, возможность перемещать фигуры в пространстве, не искажая их, нам гарантирована лишь при условии принятия евклидовой формы постулата параллельности. Поэтому применение общего замечания № 4 в рецепте конгруэнтности — ни-ни в неевклидовом пространстве. Решение Пуанкаре — интерпретировать конгруэнтность путем определения системы измерения длин и углов. Две фигуры в таком случае окажутся конгруэнтными, если длины их сторон и углы между ними совпадут. Вроде очевидно, да? Но все не так-то просто.
Определение способа измерения углов оказалось вполне лобовым. Пуанкаре определил угол между двумя линиями Пуанкаре как угол между их касательными в точке пересечения этих линий. А вот чтобы ввести определение длин — или расстояний, — Пуанкаре пришлось попотеть. С постижением этого понятия могут возникнуть трудности, поскольку Пуанкаре запихнул бесконечную плоскость в конечную область. Например, вспомним второй постулат:
2. Ограниченную прямую можно непрерывно продолжать по прямой.
Очевидно, применение обычного определения расстояний к блину делает постулат недействительным. Но Пуанкаре переопределил расстояние: новое пространство сжимается по мере приближения к его краям, и именно так конечная область превращается в бесконечную. На первый взгляд все просто, но Пуанкаре не мог просто взять и определить расстояние по своему произволу — чтобы стать приемлемым, его определение должно было удовлетворять многим требованиям. Например, расстояние между двумя точками должно быть всегда больше нуля. Кроме того, в точном математическом выражении, выбранном Пуанкаре, линия Пуанкаре должна была соединять любые две точки по кратчайшей траектории, возможной между ними (такие линии называются геодезическими ): в точности как обычные линии есть кратчайший путь между двумя точками в евклидовом пространстве.
Если вдуматься во все фундаментальные геометрические понятия, необходимые для определения гиперболического пространства, выяснится, что модель Пуанкаре приводит к непротиворечивому определению каждого. Мы можем проверить остальные, но интереснее всего рассмотреть именно постулат параллельности. Гиперболическая версия его, данная в модели Пуанкаре в форме аксиомы Плейфэра, выглядит так:
Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.
Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.
Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.
Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.
Стивен Хокинг был одним из наиболее влиятельных физиков современности, и его жизнь затронула и отчасти поменяла жизни миллионов людей. Леонард Млодинов обращается к тем двум десятилетиям, в которые он был коллегой и другом ученого, чтобы нарисовать его портрет – уникальный и очень личный. Он знакомит с Хокингомгением, ломающим голову над загадками Вселенной и всего мироздания и в конце концов формулирующим смелую теорию об излучении черных дыр, которая заставила космологов и физиков посмотреть на проблему происхождения космоса с абсолютно нового угла.
Леонард Млодинов – американский физик и ученый, специалист по квантовой теории и теории хаоса, автор десятка книг, а также успешный популяризатор науки, легко и доходчиво объясняющий сухие научные факты. Существует два основных способа мышления: аналитическое, в котором преобладает логика, и эластичное, которое формирует новые идеи и неожиданные решения задач. Именно эластичное мышление позволяет человеку успешно приспосабливаться к безумному ритму жизни. Из книги вы узнаете: почему полезно выходить из зоны комфорта; как справляться с огромным количеством информации и не сойти с ума; как мозг создает смыслы и учится адаптации; как Мэри Шелли, Дэвид Боуи и Альберт Эйнштейн использовали эластичное мышление; почему игра Pokemon Go обрела небывалую популярность.
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.