Этюды о Вселенной - [5]
Появившаяся на свет для спасения теории относительности от указанного да и от других противоречий формула E = mc>2 получила блестящее подтверждение, когда было открыто деление урана U235, при котором одна тысячная часть полной массы исчезает, чтобы вновь целиком обнаружиться в виде атомной энергии. Даже в обычных химических реакциях соблюдается соотношение E = mc>2, но количества вещества, появляющиеся или исчезающие во время реакции, меньше одной десятимиллиардной части всей массы, и обнаружить их невозможно даже с помощью очень точных весов.
Важно подчеркнуть, что в специальной теории относительности рассматривается равномерное движение, т.е. движение с постоянной скоростью, при котором не изменяется направление движения. Если движение происходит с ускорением, обусловленным внешними силами, например гравитационным притяжением, то специальную теорию относительности уже нельзя применять. Упомянутый выше парадокс близнецов, к рассмотрению которого мы ниже вернемся, возник именно из-за попытки использовать специальную теорию относительности применительно к двум системам, одна из которых движется ускоренно относительно другой.
Принцип эквивалентности
В общей теории относительности законы физики выражаются одинаково в любой системе отсчета; в ней, следовательно, рассматриваются также тела, движущиеся ускоренно относительно друг друга. Эйнштейн исходил из хорошо известного эмпирического факта – из результатов знаменитого (хотя, может быть, никогда и не проведенного) эксперимента Галилея, в котором два тяжелых тела с разными массами, сброшенные с Пизанской башни, достигали земли одновременно. Существуют два способа определения массы тела. Первый способ (инерциальный) заключается в измерении ускорения, сообщаемого телу известной силой; при втором (гравитационном) измеряется притяжение тела к какой-нибудь близко расположенной массе (если в качестве такой массы служит Земля, то измеряется, следовательно, вес тела). Уже Ньютон находил весьма странным, что оба способа определения массы дают одинаковые результаты в пределах ошибок эксперимента; что так и должно быть, по существу, следует из опыта Галилея. Эйнштейн возвел этот таинственный эмпирический факт в ранг конструктивного принципа – принципа эквивалентности.
Известность получил его мысленный эксперимент (Gedanken experiment), в котором ученый рассматривает лабораторию, помещенную в закрытой кабине лифта, в двух совершенно различных ситуациях. в первом случае кабина лифта подвешена неподвижно в гравитационном поле Земли, и наблюдатель, присутствующий в ней, видит, что предметы падают с привычным ускорением свободного падения. Во втором случае кабина лифта находится в космосе, далеко от каких-либо масс, но при этом ракетный двигатель сообщает ей ускорение, в точности равное ускорению свободного падения, и наблюдатель этого не ощущает. Эйнштейн привлек внимание к тому, что если справедлив принцип эквивалентности, то совершенно невозможно отличить падение тел под действием силы тяжести от падения под действием инерции. Таким образом, гравитация и инерция в некотором смысле приводят к одинаковым эффектам.
Кривизна пространства
Взяв за отправную точку принцип эквивалентности и пройдя сквозь головокружительную серию мысленных экстраполяций, ведомый безошибочным эстетическим чутьем, Эйнштейн пришел к понятию кривизны пространства. Чтобы как-то осознать связь гравитации с кривизной, представим себе стол с резиновой поверхностью вместо привычной твердой. Бильярдный шар, положенный на этот стол, образует углубление. Материальное тело вызывает деформацию такого же рода в окружающем пространстве. Если положить на стол два шара, то каждый из них стремится попасть в углубление, образованное другим. Возникающая в этом случае сила «притяжения» полностью аналогична силе гравитации. Все же деформация пространства, вызванная даже таким гигантским телом, как Солнце, едва заметна. Кроме объяснения гравитации теория Эйнштейна предсказывает различные тонкие эффекты, а также объясняет аномалию в движении планеты Меркурий, в свое время заставившую исследователей придумать новую планету – Вулкан, которую, однако, никто не наблюдал.
Что еще более важно, теория относительности предсказывает точно такое же поведение света в гравитационном поле, как и поведение тел под действием силы тяжести. Это предсказание, подтвержденное в 1919 г. во время солнечного затмения, сделало Эйнштейна известным и широкой публике. Итак, направленные вверх световые волны, так же, как и камень, брошенный вверх, должны терять энергию движения. в то же время свет по самой своей природе вынужден, как всегда, распространяться со скоростью 300000 км/с и не может замедляться. Свет, оказывается, теряет энергию, уменьшая свою частоту и увеличивая тем самым длину волны. в результате такого эффекта цвета радуги совсем незаметно смещены в сторону красного. Даже длина волны радиосигнала, направленного в космическое пространство с Земли, увеличится на одну миллиардную часть. Поэтому внешнему наблюдателю будет казаться, что токи в антенне, излучающей радиоволны, колеблются медленнее, чем на самом деле, хотя и очень ненамного, т.е. что на поверхности Земли время течет медленнее, чем во внешнем пространстве. Разница составляет всего лишь около одной секунды в пятьдесят лет, но современные атомные часы способны заметить ее. в Электротехническом институте им. Галилео Феррариса в Турине первый такой эксперимент позволил измерить эту величину для разности высот между Плато Роза и Турином. Потеря во времени хоть и мала, но приводит к серьезным техническим последствиям, и современная навигационная сеть, использующая спутники связи, должна учитывать этот эффект. на поверхности Солнца эффект замедления времени в тысячу раз больше, а на нейтронных звездах, плотность вещества которых такова, что масса, равная массе Солнца, занимает область с размерами, сравнимыми с размерами города, указанный эффект достигает 10%. в черной дыре, наконец, мы доходим до 100%, и, следовательно, на поверхности черной дыры течение времени вовсе прекращается. Гравитационное поле здесь настолько сильно, что не выпускает свет наружу. Список парадоксальных явлений можно было бы продолжить.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.