Этюды о свете - [16]

Шрифт
Интервал

Однако теория взорвавшейся от 12 до 20 миллиардов лет назад точки с бесконечно высокой плотностью продолжает развиваться. Ее следствиями и вместе с тем основаниями принято считать два надежно установленных факта: красное смещение в спектре излучения галактик и наличие реликтового излучения.

Субквантовое представление о сущности света ставит под сомнение выводы из этих наблюдаемых фактов, то есть заставляет сомневаться в том, что они свидетельствуют о разбегании галактик в некогда горячей Вселенной после Большого Взрыва.

В 1929 году американский астроном Эдвин Хаббл заметил, что чем дальше от нас звезды галактик, тем краснее их свет. А это может означать то, что галактики разбегаются от нас со все возрастающей скоростью. Еще в 1842 году австрийский ученый Кристиан Доплер открыл эффект увеличения длины волны света при ускорении движения его источника от наблюдателя. Хаббл определил и величину скорости разбегания галактик. Она достигала 240 тысяч километров в секунду. Казалось бы, все точно.

Но в 1936 году Хаббл, открывший закон красного смещения спектра галактик, сопоставил видимую яркость и число галактик. Оказалось, что «покраснение» их спектра никак не связано с эффектом Доплера. Ведь при удалении источника света он слабеет, меркнет, а то и совсем не виден. Но свет галактик, вопреки расчетам и теории, не слабел. Он лишь краснел. Тем самым Хаббл фактически дезавуировал свой вывод из открытого им смещения спектра галактик.

Тогда же пулковский астроном Эйгенсон тоже указал на то, что яркость галактик не согласуется с гипотезой расширения Вселенной, с разлетом галактик.

В 1947 году Хаббл говорил о возможностях крупнейшего тогда 200-дюймового телескопа на Маунт Паломар: «Он ответит нам, следует ли красное смещение считать свидетельством в пользу быстро расширяющейся Вселенной или оно обязано некоему новому принципу природы». Телескоп не ответил на этот вопрос, но подтвердил: свет галактик не меркнет.

В 1994 году Нижегородский НИИ радиофизики опубликовал препринт, в котором его сотрудник Владислав Троицкий подвел итог сорокалетних наблюдений 12 тысяч галактик и 4 тысяч квазаров. Вывод таков: их светимость не связана с красным смещением, стандартная космология несостоятельна. То есть галактические звезды и квазары никуда от нас не убегают.

Недавно журнал «Сайенс» назвал прорывом в понимании развития Вселенной исследования ученых из Сиэтла и Беркли, согласно которым она не сожмется вновь в точку, как это предрекает нынешняя теория. Следовательно, Вселенная будет жить всегда. Возможно, так и было. Всегда.

Последние годы были урожайными на открытие самых удаленных от нас галактик. 12 миллиардов лет шел к нам свет галактики GRB 971214. Исследователи Аризонского университета получили снимки и еще более удаленных звездных скоплений. «Мы увидели окраину нашей Вселенной», — заявил их руководитель Роджер Томпсон. Недавно ее увидели и в обсерватории «Апаче Пойнт». И отнюдь не исключено, что будут открыты также другие дали.

Спрашивается: а могли ли эти галактики достичь окраин Вселенной и успеть прислать нам обратно свой свет за 20 миллиардов лет, то есть за максимальное время после гипотетического Большого Взрыва? Даже если бы галактики разлетались от нас со световой скоростью, а не со скоростью всего лишь в 240 тысяч километров в секунду, как это следует из закона Хаббла, то и тогда этого не произошло бы. Значит, проблема не в разбегании галактик. Его просто нет. Проблема в том, чтобы правильно объяснить причину красного смещения в их спектрах.

Она проста. Субквантовая структура света предполагает возможность выбивания из фотонов составляющих элементов — субквантов, что «прореживает» кванты, увеличивает расстояние между их звеньями, то есть увеличивает длину волны. А это сдвигает спектр излучений в красную сторону.

Даже очень малое сечение взаимодействия субквантов допускает вероятность и реальность их столкновения с различными помехами на пути луча к нам за многие-многие годы. При этом статистически усредненном процессе выбивания субквантов из фотонов величина красного смещения линейно. связана с расстоянием от источников излучений — то есть от звезд. Такое объяснение причины красного смещения хорошо согласуется с известной формулой, данной в приложении.

Возможна и экспериментальная проверка такого предположения. В зеркальный внутри ящик запускается свет точно известной частоты. Через довольно продолжительное время из него выходят фотоны с увеличенной длиной волны, покрасневшие. И не эта ли причина, кроме других, обеспечивает красный свет заката, а иногда и восхода Солнца, при прохождении его лучей по касательной сквозь гущу помех в атмосфере Земли?

Вполне логично предположить также, что такие прореживания фотонов за миллиарды лет их странствий по Вселенной превратили некогда мощные излучения в слабые их остатки.

В 1957 году молодой пулковский исследователь Шманов обнаружил на длине волны 3 сантиметра однородное фоновое излучение с температурой 2÷8 градусов Кельвина. Статья об этом открытии была опубликована в техническом журнале и осталась малоизвестной. В 1964 году Дорошкевич и Новиков опубликовали статью с обоснованием возможности регистрации фонового излучения в радиодиапазоне. Но и это сообщение почти забыто.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.