Этот «цифровой» физический мир - [7]

Шрифт
Интервал

движения этих часов, а затем брать разность накопившихся эффектов у тех и других часов. Практика с очевидностью показывает, что адекватное описание физического мира не построить в терминах относительных скоростей – ведь даже в случае с транспортируемыми часами приходится оперировать их индивидуальными, однозначными скоростями. Ниже мы покажем, как эти скорости безошибочно отсчитывать.

По логике вышеизложенного, однозначности физических явлений мы придаём исключительно важное значение.

Во-первых, работа программ, по определению, происходит таким образом, что текущие состояния физических объектов принципиально однозначны. Поэтому, на наш взгляд, великим абсурдом является центральное понятие квантовой механики – о смешанных состояниях. Речь ведут о том, что микрообъект может находится сразу в нескольких «чистых» состояниях, имея при этом, например, сразу три различных значения энергии в одной и той же форме. Допущение подобных чудес, попирающих закон сохранения энергии, означает признание теоретиками своей неспособности объяснить явления микромира на основе разумных представлений.

Во-вторых, если, помимо неоднозначностей пребывания в том или ином состоянии, допускались бы неоднозначности при изменениях физических состояний, то, как следствие, допускались бы нарушения закона сохранения энергии. Именно такие нарушения, опять же, понадобились теоретикам для решения своих теоретических проблем: они привлекли на помощь принцип неопределённости, «согласно которому закон сохранения энергии может как бы нарушаться» [Н1] на малых интервалах времени.

Неоднозначности пребывания в состояниях и неоднозначности изменений состояний, допускаемые принципом смешанных состояний и принципом неопределённости, указывают на глубину кризиса в современной теоретической физике. Ибо она сама растоптала «самое святое», что у неё было – закон сохранения энергии. Ну, полная беспринципность! Совершенно неадекватная тому, что физический мир – воплощение «тупой автоматики»!

Итак, кратко повторим вышеназванные принципы работы программного обеспечения физического мира. Во-первых, эти программы работают по принципу обработчиков событий, т.е. по предусловиям; во-вторых, возможности этих программ ограничены; и, в-третьих, текущие директивы, определяющие состояния физических объектов, а также изменения этих состояний – всегда принципиально однозначны.

1.4. Понятие квантового пульсатора. Масса.

Чтобы создать простейший цифровой объект на экране компьютерного монитора, нужно, с помощью простенькой программы, заставить какой-либо пиксель «мигать» с некоторой частотой, т.е. попеременно пребывать в двух состояниях – в одном из которых пиксель светится, а в другом не светится.

Аналогично, простейший объект «цифрового» физического мира мы называем квантовым пульсатором. Он представляется нам как нечто, попеременно пребывающее в двух разных состояниях, которые циклически сменяют друг друга с характерной частотой – этот процесс напрямую задаёт соответствующая программа, которая формирует квантовый пульсатор в физическом мире. Что представляют собой два состояния квантового пульсатора? Мы можем уподобить их логической единице и логическому нолю в цифровых устройствах, основанных на двоичной логике. Квантовый пульсатор выражает собой, в чистом виде, идею бытия во времени: циклическая смена двух состояний, о которой идёт речь, представляет собой неопределённо долгое движение в его простейшей форме, отнюдь не подразумевающей перемещения в пространстве.

Квантовый пульсатор пребывает в бытии, пока продолжается цепочка циклических смен его двух состояний: тик-так, тик-так, и т.д. Если квантовый пульсатор «зависает» в состоянии «тик» - он выпадает из бытия. Если он «зависает» в состоянии «так» - он тоже выпадает из бытия!

То, что квантовый пульсатор является простейшим объектом физического мира, т.е. элементарной частицей вещества, означает, что вещество не делимо до бесконечности. Электрон, будучи квантовым пульсатором, не состоит ни из каких кварков – которые являются фантазиями теоретиков. На квантовом пульсаторе происходит качественный переход: с физического уровня реальности на программный.

Как и любая форма движения, квантовые пульсации обладают энергией. Однако, квантовый пульсатор принципиально отличается от классического осциллятора. Классические колебания происходят «по синусоиде», и их энергия зависит от двух физических параметров – от частоты и амплитуды – значения которых могут изменяться. У квантовых же пульсаций, очевидно, амплитуда не может изменяться – т.е. она не может являться параметром, от которого зависит энергия квантовых пульсаций. Единственный параметр, от которого зависит энергия E квантовых пульсаций – это их частота f, т.е. чисто временная характеристика. Причём, эта зависимость простейшая, линейная:

E=hf,            (1.4.1)

где h - постоянная Планка. Не следует путать формулу (1.4.1) с аналогичной формулой, которая, как считается, описывает энергию фотона – притом, что до сих пор не дан чёткий ответ на вопрос о том, что же в фотоне колеблется. Ниже мы приведём ряд свидетельств о том, что фотонов – в традиционном понимании – не существует (


Рекомендуем почитать
Физики — учителя и друзья

Автор книги рассказывает о своем жизненном пути — от рабочего до ученого, доктора физико-математических наук, о важнейших событиях минувших десятилетий, об участии в них замечательных советских ученых. Он вспоминает об интересных встречах и дружбе с выдающимися деятелями физической науки, внесших большой вклад в ее дальнейшее развитие.


Гравиполи

В книге описана одна из тенденций развития систем: способы «управления» гравитационным полем и тенденции использования гравитации.


Превращения гиперболоида инженера Гарина

Книга рассказывает о физиках — творцах лазеров (оптических квантовых генераторов). Над изобретением работали две группы ученых. К первой группе относятся исследователи квантовой теории поля, теории элементарных частиц, многих вопросов ядерной физики, гравитации, космогонии, ряда вопросов твердого тела. Вторая группа физиков стремилась в конечном счете создать физический прибор, опираясь на теоретический анализ.


Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность

Перед вами история невероятной дружбы между двумя великими физиками, изменившими понятия времени и истории, Ричардом Фейнманом и Джоном Уилером. Несмотря на различия этих двух личностей, их дружба выдержала испытания временем и способствовала чрезвычайно успешному сотрудничеству, приведшему в итоге к полному переосмыслению природы времени и реальности.


Альберт Эйнштейн: творец и бунтарь

Автор любой биографической книги всегда стоит перед проблемой отбора, тем более автор книги об Эйнштейне. Абсолютно полных биографий не существует; не претендует на это и наш труд. Мы попытались в рамках небольшой работы дать представление об этом человеке так, чтобы его образ проступил, насколько это возможно, через все то, что он сам написал; при этом большое место мы отвели его научной деятельности. Ибо наука была такой существенной частью натуры этого человека, таким стержнем всего его существа, что любая биография была бы не более чем собранием анекдотов и весьма поверхностным сочинением, если бы с легкостью прошла мимо этого.


Нейтрино - призрачная частица атома

В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.