Этот «цифровой» физический мир - [69]

Шрифт
Интервал

) – отчего создаётся иллюзия вариантов путей, по которым может лететь квант, чтобы попасть на фотопластинку. На наш взгляд, «варианты путей» имеются лишь для волн расчётных вероятностей, а квант отнюдь не «летит»: по завершении расчётов в своём канале Навигатора, квант почти-мгновенно (3.3) перебрасывается в ту точку на фотопластинке, для которой расчётная вероятность переброса оказалась максимальной. Для каждого кванта такая точка на фотопластинке – своя; но положения этих точек для множества квантов определяются одним и тем же принципом. Этот принцип очень прост, если иметь в виду, что продольный профиль волны расчётных вероятностей представляет собой последовательность узких пиков (3.4), следующих друг за другом с интервалами в одну длину волны. Так вот: точки максимально вероятного попадания кванта – это те точки на фотопластинке, в которых волны расчётных вероятностей (опорного и предметного пучков) схлёстываются своими пиками. Ещё раз подчеркнём: каждому кванту соответствует множество точек на фотопластинке, где волны расчётных вероятностей схлёстываются своими пиками, но попадает квант только в одну из таких точек, и только в ней происходит результирующее срабатывание фотографического зёрнышка. При достаточной величине экспозиции, даже в элементарном случае точечного объекта, на фотопластинке получится система точек почернения – интерференционная картинка. В случае объекта более сложного, чем точечный, каждой его точке, от которой рассеянный свет попадает на фотопластинку, будет соответствовать своя система точек почернения, т.е. своя интерференционная картинка на результирующей голограмме.

В этой процедуре записи голограммы не происходит, казалось бы, ничего удивительного. Но далее, на стадии воспроизведения, происходит настоящее чудо – если подходить к происходящему в рамках традиционных представлений о свете. Голограмму освещают только одним пучком света – опорным, повторяя геометрию его падения на стадии записи (Рис.3.6.2). Этот свет, падающий на голограмму, дифрагирует на её точках почернения, каждая из которых оказывается в роли «источника вторичных волн». В результате свет, прошедший сквозь голограмму, формирует мнимое изображение объекта – которое, при хорошем качестве голограммы, визуально неотличимо от оригинала. Сказать, что изображение объекта получается объёмное – это почти ничего не сказать. Дело в том, что при изменении, в некоторых пределах, угла зрения, объект предстаёт в соответственно изменяющихся ракурсах, т.е. наблюдатель может «заглянуть за край» изображения!


Рис.3.6.2


Эти колоритные особенности голографического изображения поясняются во многих учебниках тем, что, на стадии записи, на фотопластинке записывается информация не только об амплитудных соотношениях интерферирующих волн, но и об их фазовых соотношениях – а, при воспроизведении, эти фазовые соотношения, якобы, тоже воспроизводятся. Такое пояснение, лишь из вежливости, сгодится в качестве поэтической метафоры – ибо, физически, оно бессмысленно. Причина совсем проста: зрительный аппарат человека не производит фазового детектирования входящего света, он обрабатывает лишь попадания квантов в светочувствительные клетки сетчатки.

Но голографическое изображение, в рамках традиционных представлений о свете, является чудом не только потому, что если даже фазовые соотношения как-то записывались бы на голограмме, то они были бы совершенно бесполезны при визуальном восприятии записанного изображения. Дело ещё вот в чём. Интерференция и дифракция являются волновыми явлениями, поэтому феномен голографии пытаются объяснять в терминах световых волн, продольный профиль которых представляет собой синусоиду. Для простейшего случая точечного объекта, этот подход работает. Синусоидальная волна, дифрагируя на интерференционной картинке, которая соответствует точечному объекту, действительно сформирует мнимое изображение этого точечного объекта – что в теории дифракции доказывается строго математически. Но на этом в учебниках и заканчивается объяснение феномена голографии. А такого «объяснения» совершенно недостаточно! В самом деле, пусть объект представляет собой всего-то две различные точки, каждой из которых будет соответствовать своя система точек почернения на записанной голограмме. Опорная синусоидальная волна, падая на такую голограмму, будет дифрагировать сразу на обеих названных системах точек почернения, поскольку отсутствует какой-либо механизм, обеспечивающий селективную дифракцию – только на той или только на другой системе точек. Поэтому никаких изображений двух точек объекта не будет сформировано: световые волны, которые сформировали бы эти изображения по отдельности, «тупо» проинтерферируют друг с другом и создадут в итоге визуальную какофонию. От этого случая двухточечного объекта ничем принципиально не отличается случай, когда объект состоит из множества различных точек. Таким образом, из традиционных представлений о свете прямо следует, что голографические изображения обычных объектов не могут формироваться в принципе.

Но ведь они формируются, да ещё как! В чём же разгадка этого чуда? Разгадка, на наш взгляд, в том, что световых волн не существует в природе, а голографические изображения формируются с помощью волн расчётных вероятностей. Напомним, что эти волны имеют не физическую природу, а чисто программную (


Рекомендуем почитать
Этот правый, левый мир

Симметрия и асимметрия в математике, искусстве, философии, астрономии, зоологии, анатомии, химии, ядерной физике — предмет волнующих открытий для всех любознательных. Почему у нарвала бивень имеет левую «резьбу»? Будут ли марсианские асимметричные вирусы пагубны для космонавтов, а земные — для марсиан? Что такое «бустрафедон» и какое это отношение имеет к двум крупнейшим научным открытиям последнего десятилетия — ниспровержению физиками закона сохранения четности и открытию биологами винтообразного строения молекулы, которая несет генетический код? Об этом и еще очень многом из правого, левого мира вы сможете прочитать в этой живой и занимательной книге.


Физика элементарных частиц материи

Мировое пространство – мир. Мир – это бесконечное пространство во всех измерениях, это объективная реальность ни от чего не зависящая, существующая сама по себе. Мировое пространство – это безграничная, бесконечная пустота. Космос – это пространство между отдельными космическими объектами.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Нелокальность

«Впервые я узнал о нелокальности в начале 1990-х, будучи аспирантом, причем не от своего преподавателя квантовой механики: он не посчитал нужным даже упомянуть о ней. Роясь в местном книжном магазине, я наткнулся на только что изданную книжку «Сознательная вселенная» (The Conscious Universe), которая поразила меня заявлением о том, что «ни одно предыдущее открытие не бросало больший вызов нашему восприятию повседневной реальности», чем нелокальность. Это явление походило по вкусу на запретный плод…».


Законы движения

Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.


Золотое правило

В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.