Этот «цифровой» физический мир - [62]
Кстати, нам даже приводили аргументы насчёт давления света, полученные, так сказать, на личном опыте. «Я своей шкурой чувствовал давление света, - рассказывал один. – Был в рубашке, и мне в спину попадали импульсы инфракрасного лазерного дальномера. Каждый импульс отлично чувствовался – не через тепло, а через лёгкое тактильное ощущение!» Неубедительно, профессор! Это тактильное ощущение вызывалось, скорее всего, небольшим местным повышением давления воздуха между спиной и рубашкой – из-за небольшого повышения его температуры. Порог тепловой чувствительности кожи не превышался, а порог тактильной чувствительности – превышался. Вот и всё объяснение. «А ещё, - кричали, - при лазерном воздействии – если мелкий образец не закрепить, то его просто снесёт давлением лазерного излучения!» Друзья, мне самому не чужда тема лазерной обработки материалов. И мне хорошо известно, что из кратера, образуемого лазерным излучением на образце, вылетают, как минимум, продукты испарения материала, а, при неудачно подобранном режиме – ещё и брызги жидкой фазы. Из-за выброса этих масс и возникает «отдача», действующая на образец. Ничего общего с «давлением света» это не имеет.
На основе вышеизложенного, мы не усматриваем экспериментальных свидетельств о том, что фотоны переносят импульс. Что же касается теоретических измышлений – о том, что в звёздах-гигантах свет, идущий из недр, сдерживает их гравитационное сжатие, или о том, что в эпицентре ядерного взрыва давление света так велико, что им и порождается ударная волна – то к этим измышлениям мы не будем относиться серьёзно. Пусть теоретики веруют в давление света. Их так воспитали: когда они были маленькими, им рассказывали сказки про фотонные ракеты. Кто ж виноват в том, что с возрастом они так и не поняли, что это были сказки?
3.3. Опыт Басова: мгновенный переброс лазерного импульса на расстояние.
В 1966 г. Басов и сотрудники [Б2] впервые сообщили об эффекте, который до сих пор не имеет разумного объяснения в рамках традиционных физических концепций. Эти авторы исследовали временные задержки на движение лазерного импульса в системе генератор-усилитель. Пара рубиновых стержней-усилителей находилась на расстоянии около 2.5 м от рубинового лазера-генератора. Между генератором и усилителем была установлена делительная пластинка, которая отбирала часть энергии лазерного импульса и направляла её по другому пути, не проходящему через усилитель. Таким образом, лазерный импульс расщеплялся на два, каждый из которых попадал на свой фотодетектор, сигналы с которых подавались на скоростной двухканальный осциллограф. Методика измерений была совсем простой. При выключенном усилителе, т.е. при отключенных лампах его накачки, согласовывали задержки в электрических трактах двух каналов так, чтобы на экране осциллографа оба всплеска фототока происходили синхронно. А потом – повторяли опыт при единственном изменённом условии: при включённом усилителе. И оказывалось, что всплеск фототока от импульса, проходившего через усилитель, теперь опережал во времени другой всплеск, который служил опорным. Изумляла величина этого опережения: она была запредельно велика. Казалось бы: изменения, которые могли уменьшить задержку, происходили лишь на протяжении усилителя. Если допустить немыслимую ситуацию, при которой лазерный импульс проходил бы по включённому усилителю мгновенно, то даже тогда выигрыш во времени составил бы всего около 1.6 наносекунды. А осциллограф чётко показывал: не 1.6, а целых 9 наносекунд! При длительности самого импульса в 3 наносекунды, эффект обнаруживался вполне убедительно – как впоследствии и у других групп исследователей, использовавших среды с различными типами нелинейностей [Ч1,С4,А4,В1].
Мы расцениваем опыт Басова как один из величайших экспериментов ХХ века. Поразительно, как с помощью минимума технических средств можно было получить ошеломляющий результат, который прямо и просто, без всяких кривотолков и «интертрепаций», показал: представления ортодоксальной науки о свете, как о летящих фотонах – причём, летящих со скоростью света – это полная чушь. Проверено: ортодоксы, узнающие про результат Басова, впадают в прострацию и оказываются неспособны сказать по существу ничего членораздельного. Впрочем, были попытки заболтать этот результат и показать, что он «на самом деле ничему не противоречит». Развернулась некоторая деятельность теоретиков, к которой вполне подходит определение «театр абсурда». Ибо теоретики взялись сооружать модели движения лазерного импульса в усилителе со скоростью, превышающей скорость света в вакууме – даже не заикаясь о том, что сама постановка такой задачи повергает в прах специальную теорию относительности (СТО). Вот, например, до чего они додумались (см. обзор [О1]). При движении лазерного импульса в усиливающей среде, коэффициент усиления для переднего фронта импульса больше, чем для заднего, поскольку задний фронт движется по среде, уже частично «высветившейся». Эта неодинаковость коэффициентов усиления приводит к тому, что передний фронт приподнимается над пьедесталом импульса, а задний фронт – приопускается, что в итоге эквивалентно продвижению импульса вперёд по пьедесталу. Складывая скорость движения пьедестала и скорость «усилительного сноса», получали сверхсветовую скорость движения импульса. Самое смешное в этом объяснении было то, что в нём использовалось классическое сложение скоростей, а не релятивистское – которое следовало бы использовать ортодоксам для случая, когда одним из слагаемых являлась скорость света. Куда ж деваться – результатом релятивистского сложения скоростей никак не может быть скорость, большая скорости света в вакууме! Ну, а самое печальное в этом объяснении было то, что оно ровным счётом ничего не объясняло. Во-первых, сокращение времени движения импульса при «включённой» нелинейности в ячейке имело место не только для усиливающих, но, как выяснилось позже, и для поглощающих сред [В1] – лишь бы совпадали спектральные линии у генератора и у нелинейной ячейки. Как интересно: для сверхсветовой скорости лазерного импульса требуется попадание на спектральную линию – как и для сверхсветовой фазовой скорости на линии поглощения в веществе, о чём давно хорошо известно! А, во-вторых, русским же языком было сказано: импульс не просто двигался в ячейке со сверхсветовой скоростью – выигрыш во времени был
Симметрия и асимметрия в математике, искусстве, философии, астрономии, зоологии, анатомии, химии, ядерной физике — предмет волнующих открытий для всех любознательных. Почему у нарвала бивень имеет левую «резьбу»? Будут ли марсианские асимметричные вирусы пагубны для космонавтов, а земные — для марсиан? Что такое «бустрафедон» и какое это отношение имеет к двум крупнейшим научным открытиям последнего десятилетия — ниспровержению физиками закона сохранения четности и открытию биологами винтообразного строения молекулы, которая несет генетический код? Об этом и еще очень многом из правого, левого мира вы сможете прочитать в этой живой и занимательной книге.
Мировое пространство – мир. Мир – это бесконечное пространство во всех измерениях, это объективная реальность ни от чего не зависящая, существующая сама по себе. Мировое пространство – это безграничная, бесконечная пустота. Космос – это пространство между отдельными космическими объектами.
Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.
«Впервые я узнал о нелокальности в начале 1990-х, будучи аспирантом, причем не от своего преподавателя квантовой механики: он не посчитал нужным даже упомянуть о ней. Роясь в местном книжном магазине, я наткнулся на только что изданную книжку «Сознательная вселенная» (The Conscious Universe), которая поразила меня заявлением о том, что «ни одно предыдущее открытие не бросало больший вызов нашему восприятию повседневной реальности», чем нелокальность. Это явление походило по вкусу на запретный плод…».
Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.
В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.