Этот «цифровой» физический мир - [58]
А обнаруживается ли давление света в лаборатории? Считается, что оно обнаружилось в опытах Лебедева [Л3]. В этих опытах свет от электрической дуги направлялся на мишени из фольги, прикреплённые к крылышкам лёгких крутильных маятников разных конструкций. За время освещения с одной стороны, маятнику давали совершить одно полное колебание, замечая при этом три положения максимальных отклонений – по которым вычисляли нулевое положение. Затем свет направляли с другой стороны, и точно так же находили новое нулевое положение. Половина разности между этими двумя нулевыми положениями, как полагали, соответствовала силовому эффекту от светового давления.
Но главным фактором, маскировавшим искомый эффект, являлись радиометрические силы [Л3]. Эти силы обусловлены тем, что, в прилегающем к мишени объёме, температура газа с освещённой стороны выше, чем с неосвещённой – что порождает соответствующую разницу давлений на мишень. Радиометрические силы в значительной степени ослаблялись вакуумированием баллона, в котором помещался крутильный маятник; но полностью эти силы, конечно, не устранялись. Вызывает недоумение тот факт, что величину ожидаемого эффекта из-за действия этих сил – для реальных условий опыта – автор не привёл. Тогда не могло ли оказаться, что этими силами был обусловлен весь наблюдаемый эффект?
В пользу этого подозрения мы усматриваем одно важное свидетельство. Согласно теории Максвелла, давление света зависит от коэффициента отражения поверхности, на которую падает свет: для абсолютно отражающей поверхности давление в два раза больше, чем для абсолютно поглощающей. Поэтому Лебедев и использовал два типа мишеней: сильно поглощающих, покрытых платиновой чернью – и сильно отражающих, имевших зеркальное напыление. Но, вместо ожидавшейся почти двукратной разницы, имело место лишь незначительное превышение наблюдаемого эффекта для зеркальных мишеней по сравнению с чернёными. На основе рядов данных в [Л3], которые имеет смысл сравнивать, т.е. полученных для одного и того же маятника и одного и того же калориметра, измерявшего падавшую энергию, мы получили следующие средние величины эффекта (в условных единицах):
маятник N2 – (чернь) 1.55±0.07, (зеркала) 1.89±0.31;
маятник N3 – (чернь) 1.30±0.18, (зеркала) 1.70±0.24.
Как можно видеть, для маятника N2 отношение средних величин эффектов для чернённых и зеркальных мишеней составило всего-то 1.2, а для маятника N3 – 1.3. Эти цифры говорят о том, что Лебедев имел дело не с давлением света, а, скорее всего, с остаточными радиометрическими силами.
Весьма показательно и следующее обстоятельство. Спустя десятилетия, опыты Лебедева могли быть повторены в условиях, гораздо более благоприятных для устранения радиометрических сил. В баллоне Лебедева давление остаточных газов было несколько ниже, чем 10>-4 мм.рт.ст. [Л3]. Для сравнения: при поточном производстве радиоламп, их колбы откачивали до давления 10>-7 мм.рт.ст. [Е1], а в экспериментальных технических установках достигается давление ещё на несколько порядков ниже. Кроме того, могли быть использованы лазерные источники света, которые не только давали бы гораздо более мощный, чем у Лебедева, поток световой энергии, но и, при подходящем выборе рабочей длины волны, практически исключали бы действие света на остаточные газы. Однако, про сообщения о подобных опытах нам неизвестно. Трудно поверить в то, что никто не пытался ставить эти опыты. Проще поверить в то, что, после устранения радиометрических сил, пропадал и наблюдаемый силовой эффект. А чтобы публика-дура об этом не догадалась, придумали игрушку с замечательным названием: «радиометрическая вертушка». Светишь на её крыльчатку, а она и вертится! «Пусть вас не смущает название вертушки, - разъяснили публике, - она вертится из-за давления света!»
И вот, поскольку упорно не доказывался перенос импульса фотонами, когда они летели потоком, оставалась надежда лишь на доказательства переноса импульса отдельным фотоном. Считается, что первым таким доказательством стал эффект Комптона. Этот эффект заключается в рассеянии веществом рентгеновского излучения – с характерным увеличением его длины волны. Классическая теория рассеяния света не смогла объяснить этот феномен, и было принято объяснение Комптона [К1], основанное на подходе квантовой теории.
Согласно этому объяснению, рентгеновский фотон неупруго соударяется со слабо связанным атомарным электроном. При этом, как следует из законов сохранения энергии и импульса, часть своей энергии (и импульса) фотон передаёт электрону, выбивая его из атома и превращая в «электрон отдачи». В результате, как следует из законов сохранения энергии-импульса, длина волны фотона увеличивается. Такой подход согласуется с главными свойствами комптоновского сдвига длины волны: во-первых, с его независимостью от атомного номера вещества рассеивателя и, во-вторых, с его зависимостью лишь от угла, на который происходит рассеяние.
«Впервые я узнал о нелокальности в начале 1990-х, будучи аспирантом, причем не от своего преподавателя квантовой механики: он не посчитал нужным даже упомянуть о ней. Роясь в местном книжном магазине, я наткнулся на только что изданную книжку «Сознательная вселенная» (The Conscious Universe), которая поразила меня заявлением о том, что «ни одно предыдущее открытие не бросало больший вызов нашему восприятию повседневной реальности», чем нелокальность. Это явление походило по вкусу на запретный плод…».
Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.
В книге описываются результаты экспериментов по изучению оригинального квантово-волнового метода механического воздействия на кристаллы алмаза. Проведенные эксперименты открывают новые свойства и особенности этих кристаллов, находящихся в сильнонеравновесных условиях обработки. Показана принципиальная возможность возникновения необратимых сильнонеравновесных явлений в кристаллах алмаза при формировании в их объеме волновых потоков с винтовым возмущением волнового фронта. Взаимодействие этих волновых потоков в объеме алмаза приводит как к изменению дефектно-примесной структуры алмаза, снятию внутренних напряжений, так и к формированию морфологического рельефа поверхности кристалла без непосредственного касания всей его поверхности инструментом.