Этот «цифровой» физический мир - [35]
Действительно, для малого тела с массой m и радиусом r, дальность отчуждения D>от от большого тела с массой M есть
В таблице приведены рассчитанные по этой формуле дальности отчуждения от Солнца для некоторых малых планет (a – расстояние от Солнца в афелии; справочные данные взяты из [К2]).
Как можно видеть, расстояния от Солнца, на которых малые планеты, несомненно, ускоряются к нему, на порядок превосходят соответствующие дальности отчуждения. Как такое возможно? Парадокс легко разрешался бы, если у малых планет, действительно, не было бы собственного тяготения, т.е. не было бы своих потенциальных ямочек. Тогда для них не было бы и дальностей отчуждения от Солнца, и они могли бы ускоряться к нему в пределах всей области действия солнечного тяготения – что и происходит в действительности.
2.7. Частотные склоны, как причина тяготения. Скорость действия тяготения.
Выше мы привели ряд примеров, которые свидетельствуют о том, что вещество не обладает способностью порождать тяготение. Оно не притягивает, оно лишь подчиняется тяготению. К чему же оно тяготеет? В такой форме – «К чему?» - вопрос некорректен. Правильнее спросить: «Куда направлено силовое воздействие?» Тогда ответ таков: «Оно направлено вниз по местной вертикали». А эти местные вертикали заданы чисто программными средствами.
Как мы излагали в 1.6, частоты квантовых пульсаций заданы программно. Если частота квантовых пульсаций, например, электрона, была бы задана одинаковой во всём пространстве, то такое пространство было бы «плоское», и в таком мире не было бы тяготения. Но программы, порождающие тяготение, обязывают частоты квантовых пульсаторов зависеть от местоположения в пространстве. Таким образом формируется программная реальность, которую мы называем частотными склонами. В области пространства, в которой «действует» частотный склон, в каждом месте задан локальный градиент частот квантовых пульсаций.
Таким образом, в объёме пробного тела, находящегося на частотном склоне, программно формируется градиент частот квантовых пульсаций. К чему это приводит?
Как отмечалось в (1.4), частота квантового пульсатора и его собственная энергия прямо пропорциональны друг другу. Следовательно, градиент этих частот означает градиент энергий. А градиент энергий означает силовое воздействие. Действительно, теоретическая механика учит, что вектор силы, действующей на тело, пропорционален и противоположно направлен градиенту потенциальной энергии – отчего тело, находящееся на склоне потенциальной ямы, «скатывается вниз». Но потенциальная энергия тела не вписывается в реалии «цифрового» мира. Эта энергия зависит только от местоположения тела и не соответствует никакой форме движения – тогда как такое соответствие является непременным атрибутом реальной физической энергии (1.3). Такой реальной энергией является энергия квантовых пульсаций, и тяготение организовано через градиенты именно этой энергии – через частотные склоны. Находясь на частотном склоне, пробное тело испытывает силовое воздействие, направленное «вниз», т.е. туда, где частоты квантовых пульсаций меньше. При этом ускорение свободного падения, сообщаемое пробному телу локальным участком частотного склона, есть [Г5]
где df/dr – локальный градиент частот, c – скорость света.
О чём говорит это выражение? Прежде всего, оно подчёркивает непричастность масс к порождению тяготения, поскольку, как можно видеть, ускорение свободного падения не зависит от массы «силового притягивающего центра»: оно определяется лишь геометрией локального участка частотного склона.
Далее, из выражения (2.7.1) тривиально следует объяснение того факта, что, скажем, в одном и том же месте области действия тяготения Земли, различные тела имеют одно и то же ускорение свободного падения – независимо от их массы, формы, химического состава и агрегатного состояния. Эйнштейн придавал этому факту фундаментальное значение. Он полагал, что его теория объяснила этот фундаментальный факт. Там вышло вот что: в ньютоновском законе всемирного тяготения фигурирует т.н. гравитационная масса тела, а в выражении второго закона Ньютона – его инертная масса. Комбинация этих выражений даёт, что ускорение свободного падения тела прямо пропорционально отношению его гравитационной массы к инертной. А это отношение в каждом месте одинаково для различных малых тел – и пусть оно, мол, равно единице! Тогда, мол, всё сходится! Но у этого «объяснения» есть всего один недостаточек. Оно, может, и работало бы, если понятие «гравитационная масса» имело бы физический смысл – если массы обладали бы притягивающим действием. Но, как проиллюстрировано выше, это не так. А одинаковость ускорения свободного падения у разных тел обусловлена тем, что в любом месте крутизна частотного склона, порождающего тяготение, одинакова для всех. Поэтому, когда говорят, что эксперименты Этвёша, Дикке и Брагинского установили равенство инертной и гравитационной масс с точностью аж до двенадцатого знака, то надо понимать, что установили-то, с этой точностью, одинаковость ускорений свободного падения для различных тел, и ничего сверх этого. Согласно (2.7.1), идентичность этих ускорений, сообщаемых разным малым телам одним и тем же участком частотного склона – это
6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.
В книге описываются результаты экспериментов по изучению оригинального квантово-волнового метода механического воздействия на кристаллы алмаза. Проведенные эксперименты открывают новые свойства и особенности этих кристаллов, находящихся в сильнонеравновесных условиях обработки. Показана принципиальная возможность возникновения необратимых сильнонеравновесных явлений в кристаллах алмаза при формировании в их объеме волновых потоков с винтовым возмущением волнового фронта. Взаимодействие этих волновых потоков в объеме алмаза приводит как к изменению дефектно-примесной структуры алмаза, снятию внутренних напряжений, так и к формированию морфологического рельефа поверхности кристалла без непосредственного касания всей его поверхности инструментом.
Книга Д.Данина посвящена величайшему физику-экспериментатору двадцатого столетия Эрнесту Резерфорду (1871–1937).
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В очередном выпуске серии «Научно-популярная библиотека» рассказывается о том, как возникают молния и гром, какой вред может причинить молния и как защититься от её разрушительного воздействия. В начале книги даются основные сведения об электричестве.