Этот «цифровой» физический мир - [32]

Шрифт
Интервал

», и далее: «…трудностью является медленная сходимость аналитического разложения по степеням масс» [М2]. Тем не менее, значения масс, «данные де Ситтером, следует считать наилучшими… Всякое уточнение этих значений потребовало бы построения новой теории, …потребовался бы также новый ряд наблюдений положений этих спутников» [Д1]. Выбранные здесь «наиболее вероятные» значения масс спутников – из набора не повторяющихся значений – едва ли могут служить доказательством того, что спутники действительно притягивают друг друга. Скорее, мы имеем свидетельство о том, что притягивающего действия у них как раз нет.

Такое положение с собственным тяготением у спутников планет является тревожным, поэтому нас пытаются убедить в том, что признаки собственного тяготения имеются хотя бы у астероидов. «Смотрите, - показывали нам фотографии, - на поверхности астероида лежат валуны!» Но мы присматривались и обнаруживали, что эти валуны не «лежат» на поверхности, они вплавлены в неё. «Смотрите, - показывали нам другие фотографии, - на поверхности астероида видны озёра пыли!» Но пыль – если там действительно пыль – может держаться, например, на электростатике… Вот если у астероида обнаружился бы обращающийся вокруг него спутничек – это было бы похоже на доказательство наличия у астероида собственного тяготения.

Ой, до чего же исследователям хотелось обнаружить такие спутнички! Для их визуального обнаружения, у наземных оптических телескопов было недостаточно хороша разрешающая сила, поэтому приходилось выкручиваться. Отыщут астероид с переменным блеском и заявят: это из-за того, что спутничек его периодически затмевает. Да нет, говорят им, это один астероид, просто он вращается и блестит то тёмной, то светлой гранями. Тогда отыщут астероид с двойной периодичностью кривой блеска: уж тут-то точно спутничек затмевает! Да нет, говорят им, это опять один астероид, только с асимметричной формой – например, с выростом – и он испытывает два вращения сразу. Тогда предъявят радио-изображения тесной парочки: допплеровские сдвиги свидетельствуют о её вращении около общего центра [П1]! Да нет, говорят им, это опять вращается один астероид, с перемычкой – радио-изображения и допплеровские сдвиги будут такие же.

Неизвестно, сколько бы ещё длилась эта сказка про белого бычка, если бы не дальний космический зонд ГАЛИЛЕО. 28 августа 1993 года, пролетая рядом с астероидом Ида, этот зонд сделал серию его снимков, которые затем передал по радиоканалу на Землю. Оказалось, что на этих снимках запечатлён небольшой объект рядом с Идой; его назвали Дактилем.

Если бы этот фотосеанс длился достаточно долго для того, чтобы зафиксировать обращение Дактиля вокруг Иды, то открытие спутника у астероида не вызывало бы сомнений. Но, увы, за короткое время пролёта зонда взаимное положение Иды и Дактиля, практически, не изменилось. При том, что масса Иды не была известна, реконструкция орбиты Дактиля, на основе закона всемирного тяготения, допускала весьма значительную неопределённость. Это не мы придумали, это они сами пишут: «Почти сразу стало ясно, что массу/плотность Иды не получить вместе с определением орбиты Дактиля. Вместо этого, был сконструирован набор его орбит – для различных возможных значений массы/плотности Иды, от 1.5 до 4.0 г/см>3. Для различных значений плотности различны и орбиты, причём, для названного диапазона плотностей, орбиты различаются очень сильно. При плотностях Иды, меньших примерно 2.1 г/см>3, орбиты оказываются всего лишь гиперболическими. При больших плотностях Иды орбиты являются эллиптическими с огромными удалениями в апоцентрах, с удалениями в перицентрах примерно 80-85 км, и с периодами, различающимися от примерно одних суток до многих десятков суток. При плотности примерно 2.8 г/см>3, орбита почти круговая… с периодом около 27 часов. Для ещё больших плотностей, эллиптические орбиты имеют удаления в апоцентрах 95-100 км, а удаления в перицентрах уменьшаются с увеличением плотности. Для плотности Иды более чем 2.9 г/см>3, удаление в перицентре меньше 75 км и период меньше 24 часов…» [ВЕБ1] (перевод наш).

Давайте же смотреть правде в глаза: доказательства того, что Дактиль действительно обращался вокруг Иды – отсутствуют, как отсутствуют и доказательства того, что Ида оказывала на движение Дактиля хоть какое-то воздействие. Несмотря на, мягко говоря, сомнительность «первого достоверного» открытия спутника у астероида, из этого события сделали целую сенсацию. Ну, понятно: общественности не полагается знать, что учёные мужи, на переднем крае науки и техники, фигнёй страдают. Общественности полагается радоваться великим свершениям!

А больше всех обрадовались астрономы, которые как раз вводили в строй новейшие астрооптические инструменты – телескопы с адаптивной оптикой. Это – редкостная прелесть. У обычных телескопов разрешение ограничено помехами, которые дают подвижки воздуха: абсолютно спокойной атмосферы не бывает. А при работе адаптивной оптики, все подвижки изображения в рабочем поле компенсируются и, с помощью компьютерной обработки, исключаются из результирующей картинки. То есть, ведёте вы таким телескопом какой-нибудь астероид (особенно хорошо, если он сам не вращается), и получаете его чёткий образ, а всё остальное – начисто отсекается! Причём, отсекаются не только шумы из-за подвижек воздуха – отсекается и звёздное небо, на фоне которого астероид летит. Автоматика – она же тупая! На снимках, сделанных с помощью обычных телескопов, звездное небо присутствует – что может худо-бедно свидетельствовать о том, что астроном не спал в ту самую ночь. А смотришь на эти «адаптивные» картинки – и недоумеваешь: а не состряпаны ли они, по-простому, средствами компьютерной анимации? Ведь никто не проконтролирует!


Рекомендуем почитать
Загадка падающей кошки и фундаментальная физика

Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.


Космос. От Солнца до границ неизвестного

Что случилось с Венерой? Как Сатурн стал властелином колец? Где искать Девятую планету? Почему мы не видим облако Оорта? Что мы знаем о самой большой звезде? Как живут звезды после смерти? Как галактики воруют друг у друга? Как сфотографировать черную дыру? Какая галактика самая большая? Эта книга отправит вас в космическое путешествием вместе с экспертами журнала New Scientist. Стартуя от Солнца, мы посетим планеты земной группы, газовые гиганты и их спутники, пересечем облако Оорта и выйдем за границы Млечного Пути.


Масса атомов. Дальтон. Атомная теория

Джон Дальтон является основоположником атомной теории и одним из создателей современной химии. Преподаватель скромной начальной школы Манчестера обратился к идеям, сформулированным за тысячу лет до него Демокритом и другими греческими философами, и предположил, что весь мир состоит из неделимых атомов и в результате их взаимодействия появляются элементы, которые, в свою очередь, образуют химические соединения. Несмотря на то что существование атомов вызывало серьезные споры вплоть до начала XX века — то есть и через 100 лет после публикации труда Дальтона, — именно работа этого просветителя, не получившего университетского образования, легла в основу концептуальной революции, изменившей лицо науки.


Атом урана — новый источник энергии

Статья опубликована в журнале «Огонек», № 35 (954), 1945.


Резерфорд

Книга Д.Данина посвящена величайшему физику-экспериментатору двадцатого столетия Эрнесту Резерфорду (1871–1937).


По ту сторону кванта

Бытует упорное мнение, что в науке есть факты, которые начинающим с нею знакомиться знать рано, а сообщать искушенным в ней — стыдно. Чаще всего об этом вспоминают, когда пытаются объяснить строение атома. Быть может, поэтому до сих пор не написана книга о квантовой механике достаточно строгая, чтобы не обидеть знатока, достаточно простая, чтобы не отпугнуть новичка, и вместе с тем интересная им обоим.Эта книга не для знатоков, хотя и они найдут здесь несколько неожиданных фактов. Она для тех, кто заканчивает школу, и для тех, кто пытается посмотреть на мир немного шире, чем позволяет им их специальность — необходимо узкая, чтобы быть продуктивной.В предлагаемой книге история атома рассказана вполне строго.