Этот «цифровой» физический мир - [3]
Можно, однако, поступить не только гораздо проще, но и гораздо честнее по отношению к экспериментальным реалиям. А именно: признать, что в физическом мире существует только вещество, и что энергии физического мира – во всём их многообразии форм – это энергии только вещества. А также допустить, что существует надфизический уровень реальности, где находятся программные предписания, которые, во-первых, формируют частицы вещества на физическом уровне реальности и, во-вторых, задают их свойства, т.е. предусматривают варианты физических взаимодействий, в которых эти частицы могут участвовать. Физический мир таков, каков он есть, отнюдь не сам по себе: таким его делает соответствующее программное обеспечение. Пока это программное обеспечение действует, физический мир существует.
Одно лишь допущение программного управления поведением вещества кардинально упрощает физику. Физический мир, на фундаментальном уровне, оказывается «цифровым», да ещё основанным на простейшей, двоичной логике! Каждая элементарная частица – электрон, протон – пребывает в физическом бытии, пока работает программка, которая производит соответствующие циклические смены состояний. Тяготение и электромагнитные явления порождаются не свойствами вещества: не массами и не электрическими зарядами. И тяготение, и электромагнитные явления обусловлены «чисто программными средствами». Которые, определённым образом, производят превращения энергии вещества из одних форм в другие – порождая иллюзию действия сил на вещество. Устойчивые ядерные и атомные структуры также существуют благодаря работе соответствующих структуро-образующих алгоритмов. И даже свет распространяется благодаря программе-навигатору, которая «прокладывает путь» для него. Все эти программы, будучи давно отлажены, работают автоматически – при этом одинаковые ситуации одинаково отрабатываются. Из-за этой-то, не в обиду будь сказано, тупой автоматики и получается, что в мире действуют физические законы, а не имеют место произвол и хаос. И задачу-минимум для исследователей мы видим здесь в том, чтобы постигнуть хотя бы основные принципы организации программных предписаний, которые поддерживают бытие физического мира.
Чем же такой подход лучше традиционного? Это как раз тот вопрос, на который мы будем отвечать всей этой книгой. Если кратко, то предлагаемый подход лучше тем, что он честнее отражает объективные реалии!
Но, разумеется, предлагаемый подход изначально основан на допущении того, что физический мир несамодостаточен. «Кто же писал все эти программы?» - спрашивают нас. Отвечаем: у тех, кто писал эти программы, много имён, например – Демиурги. «Понятно, - говорят нам и сочувственно качают головами. – Выходит, что физический мир – творённый. Но этого не может быть!» - «Почему же?» - интересуемся мы. – «Потому что сразу возникает вопрос: если физический мир творённый, созданный – то кто создал Создателя?»
Поразительно, но этот вопрос сильно смущает иных мыслителей и вгоняет их в печаль. Поэтому предлагаем простой рецепт для того, как эту печаль утолить. Пусть оные мыслители поразмыслят о том, что Создатель-то – самодостаточен! И что физический мир является его частью. И программное обеспечение этого мира – тоже.
1.2. Последовательное или параллельное управление физическими объектами?
Сегодня даже дети что-нибудь да знают про персональные компьютеры. Поэтому, в качестве детской иллюстрации к предлагаемой модели физического мира, можно привести следующую аналогию: мирок виртуальной реальности на компьютерном мониторе и программное обеспечение этого мирка, которое находится не на мониторе, а на другом уровне реальности – на жёстком диске компьютера. Придерживаться концепции о самодостаточности физического мира – это примерно то же самое, что всерьёз утверждать, будто причины мигания пикселей на мониторе (да ведь как согласованно мигают: картинки нас завораживают!) находятся в самих пикселях или, по крайней мере, где-то между ними – но там же, на экране монитора. Ясно, что, при таком нелепом подходе, в попытках объяснить причины этих дивных картинок неизбежно придётся плодить иллюзорные сущности. Ложь будет порождать новую ложь, и т.д. Причём, подтверждения этого потока лжи будут, казалось бы, налицо – ведь пиксели, как ни крути, мигают!
Но, всё-таки, эту компьютерную аналогию мы привели за неимением лучшего. Она весьма неудачна, поскольку программная поддержка бытия физического мира осуществляется по принципам, реализация которых в компьютерах сегодня запредельно недосягаема.
Принципиальное различие здесь заключается в следующем. В компьютере работает процессор, который, за каждый рабочий такт, выполняет логические операции с содержимым весьма ограниченного количества ячеек памяти. Это называется «режим последовательного доступа» - чем больше объём задания, тем большее время требуется для его выполнения. Можно повышать тактовую частоту процессора или увеличивать число самих процессоров – принцип последовательного доступа при этом как был, так и остаётся. Физический же мир живёт по-другому. Представляете, что в нём творилось бы, если электроны управлялись бы в режиме последовательного доступа – и каждый электрон, чтобы изменить своё состояние, должен был бы дожидаться, пока будут опрошены все остальные электроны! Дело ведь не в том, что электрон мог бы и подождать, если «тактовую частоту процессора» сделать фантастически высокой. Дело в том, что мы видим: несметные количества электронов изменяют свои состояния одновременно и независимо друг от друга. Значит, они управляются по принципу «параллельного доступа» - каждый индивидуально, но все сразу! Значит, к каждому электрону подключен стандартный управляющий пакет, в котором прописаны все предусмотренные варианты поведения электрона – и этот пакет, не обращаясь к главному «процессору», управляет электроном, немедленно отзываясь на ситуации, в которых тот оказывается!
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.