Этот «цифровой» физический мир - [14]

Шрифт
Интервал

). Частота этого лазера сравнивалась с частотой невращающегося гелий-неонового лазера, стабилизированного по линии поглощения в метане. Авторы утверждали, что эффект от «эфирного ветра» не превышал 0.13±0.22 Гц, или (1.5±2.5)·10>-15. Между тем, они наблюдали стойкий систематический эффект на второй гармонике частоты вращения платформы, с амплитудой 17 Гц (2·10>-13), причём фаза этого эффекта была строго согласована с ориентацией платформы относительно лаборатории. О магнитострикции речь не шла, поскольку зеркала внешнего резонатора были посажены на торцы трубки из стеклокерамики, к тому же резонатор был экранирован. Источник эффекта на второй гармонике остался невыясненным, и авторы везде говорили об этом эффекте как о паразитном. Давайте посмотрим – не мог ли он быть проявлением локально-абсолютной скорости лаборатории, т.е. 360 м/с (на широте 40). Длина l внешнего резонатора Фабри-Перо была рана 30.5 см, а радиусы кривизны зеркал r были равны 50 см. Нам не известно о строгой теории сдвига резонансных частот неконфокального резонатора при его продольном или поперечном сносе. По нашим оценкам, с точностью до второго порядка, при продольном сносе частота изменяется так же, как и у резонатора с плоскими зеркалами: f=f>0(1-β>2). Что касается случая поперечного сноса, то, с учётом неконфокальности резонатора, мы получили соотношение f=f>0(1-β>2+(l/2r>2), которое в случае конфокального резонатора (l=r) совпадает, опять же, с соотношением для резонатора с плоскими зеркалами. Как можно видеть, размах разностного эффекта составил бы величину Δf/f>0=(l/2r>2. Если приравнять её удвоенной амплитуде эффекта на второй гармонике, то для скорости получается значение 340 м/с, которое всего на 5.6% отличается от локально-абсолютной скорости лаборатории. На наш взгляд, этот результат Брилета и Холла не менее значителен, чем подтверждение, с 15-значной точностью, отсутствия квадратичных эффектов из-за остальных движений лаборатории.

Итак, что же мы видим? В опытах, которые, как считается, подтверждают принцип относительности, отсутствие реакции прибора на свою локально-абсолютную скорость было обусловлено либо недостатком точности, либо самой методикой опыта. Если же, как исключение, детектирование локально-абсолютной скорости допускали как точность, так и методика опыта – обнаруживаемый эффект игнорировали или называли «паразитным». Мы рассказали всего о трёх опытах – Майкельсона-Морли, Чемпни с соавторами, Брилета-Холла – где, с большой долей вероятности, автономное детектирование локально-абсолютной скорости имело место. По-видимому, способов решения этой задачи гораздо больше, чем три, ведь не зря говорится, что «если есть хотя бы один способ – значит, есть много способов». Факт в том, что эта задача решается – и этот факт демонстрирует полную несостоятельность принципа относительности.

Впрочем, если физический смысл локально-абсолютной скорости сводился бы лишь к возможности её автономного детектирования – грош цена была бы такому смыслу. Далее мы расскажем о ряде физических явлений, в которых локально-абсолютная скорость проявляется во всей своей красе – и о соответствующих, иногда драматических, исторических эпизодах.

1.8. Линейный эффект Допплера в модели локально-абсолютных скоростей.

Согласно специальной теории относительности (СТО), величина линейного эффекта Допплера есть

где f - частота излучения, Vcosθ - относительная скорость расхождения или сближения излучателя и приёмника, c - скорость света. Согласно же нашей модели, в которой фазовая скорость света в вакууме является фундаментальной константой по отношению лишь к местному участку «инерциального пространства», реализуемого с помощью частотных склонов, величина линейного эффекта Допплера есть

где V>1cosθ>1 и V>2cosθ>2 – проекции локально-абсолютных скоростей излучателя и приёмника на соединяющую их прямую.

Заметим, что если излучатель и приёмник находятся в одной и той же области «инерциального пространства» - например, если они оба находятся вблизи поверхности Земли – то выражение (1.8.2) редуцируется к выражению (1.8.1). В этом частном случае совпадают предсказания, сделанные на основе обеих концепций – относительных и локально-абсолютных скоростей – и, соответственно, здесь обе эти концепции одинаково хорошо подтверждаются опытом. Но ситуация кардинально изменяется для случаев, когда излучатель и приёмник находятся в различных областях «инерциального пространства» - например, по разные стороны границы земной области тяготения. Подобная ситуация имеет место, например, при радиолокации планет или при радиосвязи с межпланетным космическим аппаратом. Здесь предсказания на основе концепций относительных и локально-абсолютных скоростей различны, и они не могут одинаково хорошо подтверждаться опытом. Концепция локально-абсолютных скоростей предсказывает здесь совершенно «дикое», по релятивистским меркам, поведение линейных допплеровских сдвигов. Официальная наука долгое время внушала нам, что ничего подобного здесь не наблюдается, и что линейный эффект Допплера происходит здесь в полном согласии с предсказаниями СТО. Оказалось, что это – ложь. Сейчас мы проиллюстрируем, что в действительности имеет место как раз то самое, «дикое», поведение линейных допплеровских сдвигов.


Рекомендуем почитать
Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность

Перед вами история невероятной дружбы между двумя великими физиками, изменившими понятия времени и истории, Ричардом Фейнманом и Джоном Уилером. Несмотря на различия этих двух личностей, их дружба выдержала испытания временем и способствовала чрезвычайно успешному сотрудничеству, приведшему в итоге к полному переосмыслению природы времени и реальности.


Альберт Эйнштейн: творец и бунтарь

Автор любой биографической книги всегда стоит перед проблемой отбора, тем более автор книги об Эйнштейне. Абсолютно полных биографий не существует; не претендует на это и наш труд. Мы попытались в рамках небольшой работы дать представление об этом человеке так, чтобы его образ проступил, насколько это возможно, через все то, что он сам написал; при этом большое место мы отвели его научной деятельности. Ибо наука была такой существенной частью натуры этого человека, таким стержнем всего его существа, что любая биография была бы не более чем собранием анекдотов и весьма поверхностным сочинением, если бы с легкостью прошла мимо этого.


Кара небесная. Космическое миропонимание

Космические угрозы жизни на Земле дают повод для осмысления таких грозных событий в прошлом, выявления их тенденций и перспектив. В книге космическое миропонимание базируется на предпосылке о свойствах и движущих силах Бытия. Творческие люди займутся аналитическим исследованием и сопоставлением традиционного и нового знания. Книга даст им пищу для ума. Наши исследования позволили выявить причины этих явлений. Кто из людей сумеет пережить километровые цунами, разрушительные землетрясения, разрушение атмосферы и природных ландшафтов, извержения вулканов и прочие ужасные явления? Подобные катастрофы в истории Земли происходили много раз, и они готовы обрушиться на нашу планету в ближайшее время.


50 лет советской физики

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Радиация. Дозы, эффекты, риск

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Нейтрино - призрачная частица атома

В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.