Эта странная математика. На краю бесконечности и за ним - [44]
Простые числа – это еще и своего рода атомы числовой вселенной, из которых строятся все остальные натуральные числа. Казалось бы, есть все основания надеяться, что они будут подчиняться строгим законам – и предсказывать, где именно в числовом ряду появится следующее, не будет составлять никакого труда. Но нет, эти математические кирпичики поразительно непослушны и капризны. Именно это противоречие между ожиданием и реальностью, стойкое ощущение, что некие организующие принципы чрезвычайной важности находятся за пределами нашего разумения, не давало покоя математикам с античных времен.
И действительно, если рассматривать простые числа по одному или маленькими группами, создается ощущение, что закон им не писан. Но если взглянуть на все их множество, в нем, словно в гигантском косяке рыб или стае скворцов, начинает проявляться невидимый вблизи уровень организации. Одно из самых любопытных открытий в области простых чисел было сделано случайно, и мы уже упоминали о нем в предисловии. Произошло это в 1963 году. Заскучав на какой-то лекции, польский математик Станислав Улам начал рисовать на листке бумаги. Он записывал числа в клетки по квадратной спирали, поставив в центре единицу, виток за витком. Затем он обвел кружками все простые числа и обратил внимание на одну странность: по некоторым из диагоналей спирали, а также по нескольким горизонтальным и вертикальным линиям простые числа выстроились необычно густо. Спирали большего размера, построенные с помощью компьютеров и содержащие десятки тысяч чисел, демонстрируют ту же удивительную закономерность. Насколько можно судить, она сохраняется и дальше, какую бы огромную спираль нам ни вздумалось построить.
Часть из таких “плотных” линий спирали соответствует определенным формулам в алгебре, которые, как мы знаем, дают высокий процент простых чисел. Самая известная из них найдена Леонардом Эйлером и названа в его честь. Многочлен Эйлера n>2 + n + 41 выдает простые числа для всех значений n от 0 до 39. Например, при n = 0, 1, 2, 3, 4 и 5 получаем соответственно 41, 43, 47, 53, 61 и 71. При n = 40 формула дает (не простое) число 41>2, но при более высоких значениях n продолжает и дальше с завидной частотой выдавать простые числа. Есть и другие похожие формулы, обладающие этим не совсем понятным свойством порождать большое количество простых чисел. Математики продолжают дискутировать по поводу значения закономерностей в спирали Улама и их связи с нерешенными задачами, такими как проблема Гольдбаха, гипотеза о числах-близнецах и гипотеза Лежандра (согласно которой между квадратами двух последовательных натуральных чисел всегда есть простое число). Бесспорно одно: спираль Улама наглядно демонстрирует, что закономерность существует и что, несмотря на кажущуюся беспорядочность распределения простых чисел, они следуют каким-то общим правилам, регулирующим их появление в больших группах.
Спираль Улама.
Самая полезная из известных теорем о распределении простых чисел так и называется – “теорема о распределении простых чисел” – и по праву считается одним из величайших достижений в теории чисел. Если в двух словах, она гласит, что при любом достаточно большом числе N количество простых чисел, меньших N, приблизительно равно N, деленному на натуральный логарифм N. (Натуральный логарифм числа x – это показатель степени, в которую нужно возвести число e, равное 2,718…, чтобы получить x.) Определить, где именно находится следующее простое число, по этой формуле невозможно, зато она дает довольно точное представление о том, как много в заданном интервале простых чисел, при условии что он достаточно велик.
В отличие от теоремы Евклида о бесконечности множества простых чисел, которую, как мы видели, можно доказать за минуту простыми словами, на доказательство теоремы о распределении простых чисел ушло целое столетие. Впервые, в 1792 или 1793 году, закономерность заметил немец Карл Гаусс, еще подростком, а спустя несколько лет, независимо от него, – француз Адриен-Мари Лежандр. Математики, конечно, уже давно знали, что интервалы между простыми числами увеличиваются с ростом значений, но после того, как во второй половине XVIII века были опубликованы расширенные таблицы простых чисел и более точные логарифмические таблицы, поиски конкретных формул, описывающих это уменьшение плотности, оживились. Гаусс и Лежандр обратили внимание, что плотность простых чисел близка к величине, обратно пропорциональной логарифму. Дальнейшее важное развитие эта работа по поиску функции распределения получила в трудах русского математика Пафнутия Чебышёва в период с 1848 по 1850 год. Но самый важный прорыв произошел в 1859 году, когда немец Бернхард Риман опубликовал свою статью “О числе простых чисел, не превышающих данной величины” (единственную его статью на данную тему). На восьми страницах ученый изложил свое предположение, позже названное гипотезой Римана, которое по сей день будоражит умы математиков, пытающихся его доказать. Считается, что Давид Гильберт как-то сказал: если ему суждено будет заснуть на тысячу лет, первое, чем он поинтересуется после пробуждения, – доказана ли уже гипотеза Римана. В своей книге о теории, на которой основано предположение Римана, американский математик Гарольд Эдвардс пишет:
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
В “Книге Бытия” Гвидо Тонелли, известный итальянский физик, стоявший у истоков открытия знаменитого бозона Хиггса, описывает историю происхождения Вселенной и эволюцию жизни на Земле с точки зрения фундаментальной физики. Эта книга – одна из наиболее емких, внятных и убедительных попыток ответить на вечный вопрос человечества: “Что же на самом деле произошло в те первые мгновения?” Уместив 13,8 миллиарда лет в библейские “семь дней сотворения мира”, Тонелли увлекает читателя в стремительное путешествие по истории космоса – от Большого взрыва и рождения Вселенной до появления на Земле жизни, человеческого языка и способности человека видеть, понимать и описывать мир вокруг себя.
В этой книге увлекательно и доступно от первого лица рассказывается история потрясающего научного открытия. Физик-теоретик Пол Стейнхардт, профессор Принстонского университета, автор важных космологических теорий о ранней Вселенной, в чью честь Международная минералогическая ассоциация в 2014 году назвала новый минерал “стейнхардтитом”, описывает, как была найдена новая форма вещества – квазикристаллы, с конфигурацией атомов, запрещенной законами классической кристаллографии. Это захватывающая история о зарождении нового научного направления, о “невозможности”, которая оказалась возможной, о подлинной страсти и отчаянной храбрости в науке. В формате PDF A4 сохранен издательский макет.
Ричард Рэнгем, приматолог и антрополог, специалист в области эволюции приматов, профессор Гарвардского университета, подробно и доступно разбирает научную дискуссию по важнейшим вопросам: почему людям, представителям единого биологического вида, свойственны одновременно и удивительная доброта, и немыслимая жестокость; как эти качества, порой выходящие далеко за пределы здравого смысла, появились и закрепились в ходе эволюционной истории человечества; откуда у нас нравственные чувства, понятия о добре и зле; и главное – обречены ли мы своим эволюционным парадоксом на вечную угрозу насилия. В формате PDF A4 сохранен издательский макет книги.