Если бы числа могли говорить. Гаусс. Теория чисел - [12]

Шрифт
Интервал

Название докторской диссертации Гаусса звучит так: Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse («Новое доказательство теоремы, в которой говорится, что любая алгебраическая рациональная функция может быть разложена на множители первой или второй степени с действительными коэффициентами»). В этом заголовке содержится небольшая ошибка, которая принесла молодому Гауссу еще больше величия: это доказательство было не «новым», а первым в истории полным доказательством основной теоремы алгебры.


Математика — царица наук, а арифметика — царица математики.

Карл Фридрих Гаусс


В этой теореме, в том виде, в каком ее формулировал Гаусс (затем она была обобщена), утверждается, что любой многочлен от одной переменной имеет столько корней, сколько показывает его степень, допуская, что эти корни могут быть множественными. Многочлен Р — это выражение вида Р(x) = a>nx>n + a>n-1x>n-1 + ... + а>1х + a>0, где коэффициенты а>n, а>n-1, ... , a>1, a>0 — действительные числа. Степень Р — это наибольший показатель степени, в которую нужно возвести переменную х, то есть n. Корни многочлена — это точки, в которых он равен нулю, то есть такие точки х, в которых Р(х) = 0. В качестве естественного следствия из теоремы можно сделать вывод, что любой многочлен степени n с n корнями, необязательно разными, которые мы обозначим r>1, r>2,..., r>n, можно разложить как произведение одночленов вида:

Р(х) = (x-r>1) · (x - r>2) · ... · (x - r>n).

Задачи такого типа часто встречаются в повседневной жизни, и их решение заботило математиков с самого начала развития этой науки. Очевидно, что задачи типа x - 3 = 0 имеют единственный корень, то есть 3. Если мы возьмем многочлен x + 3 = 0, то для его решения нам придется учитывать отрицательные числа, поскольку решение — это -3. Именно по этой причине потребовалось расширить множество натуральных чисел до множества целых чисел, которое включает в себя и отрицательные числа. Вавилоняне и египтяне осознали, что для решения простых уравнений первой степени нужно новое расширение, в данном случае это дроби, поскольку решением уравнения 3x — 2 = 0 является величина 2/3. Множество, которое включало в себя дроби, назвали множеством рациональных чисел.

С увеличением показателя степени многочлена все усложняется, и такое простое уравнение, как х²-2 = 0, привело греков к великому открытию, поскольку решение нельзя было выразить в виде дроби. Действительно, методом от противного было найдено аналитическое доказательство того, что sqrt(2) не является рациональным числом.


ИРРАЦИОНАЛЬНОЕ ЧИСЛО sqrt(2)

Находчивые древнегреческие математики предложили доказательство нерациональности sqrt(2), пользуясь методом от противного, который состоит в том, чтобы предположить противоположное тому, что мы хотим доказать, и прийти к логическому противоречию. Предположим, что sqrt(2) рационально, то есть его можно выразить с помощью некоторой дроби p/q. Теперь предположим, что дробь невозможно сократить, то есть что р и q — взаимно простые. Иначе было бы достаточноразделить оба элемента дроби на наибольший общий делитель. Так как sqrt(2) = p/q, получается, что, если возвести в квадрат оба члена, то 2 = p²/q², значит, 2q² = p², то есть р² — это четное число, и, следовательно, таким же является р. Так как р — четное число, то существует натуральное число k, такое, что р = 2k. Если подставить новое значение р в наше уравнение, получится, что 2q² = 4k². Это предполагает, что q² = 2k², то есть q -— также четное. Но это означает, что нашу исходную дробь можно сократить, а это противоречит условиям, следовательно, предположение, что sqrt(2) — рациональное число, ложно.


Столкнувшись с невозможностью выразить такие числа, как sqrt(2), в виде дроби, математики назвали их иррациональными. Несмотря на сложности, связанные с их точной записью, иррациональные числа имеют реальное значение, поскольку их можно представить как точки на числовой прямой. Число sqrt(2) находится между 1,4 и 1,5, и если построить прямоугольный треугольник, катеты которого будут равны 1, мы знаем, что его гипотенуза равна sqrt(2) по теореме Пифагора. Множество чисел, в которое включались бы и рациональные, и иррациональные числа, назвали действительными числами, и они представлены на числовой прямой.

Проблема поиска корней многочлена усложнялась, когда речь шла о том, чтобы найти решения таких с виду простых уравнений, как х² + 1 = 0. Казалось очевидным, что ни одно число, возведенное в квадрат, не может дать в результате отрицательное число, каким бы ни было исходное число, положительным или отрицательным. Итак, пришлось создать новый тип чисел, которые позволили бы решить уравнения этого типа. Новое число, sqrt(-1), было названо мнимым числом и обозначено как г. Создание, казалось бы, из ничего, решения для этого уравнения кажется обманом: почему бы не признать, что у уравнения просто нет решения? Но ответ в том, что найденное решение вызвало большой прогресс арифметики и при этом оно не содержит логических противоречий. Самолеты никогда не поднялись бы в воздух, если бы инженеры не пользовались мнимыми числами. Итак, если мы будем использовать новое обозначение и решим уравнение х² +1=0 как квадратный многочлен вида aх² + bх + с = 0, с помощью известной формулы


Рекомендуем почитать
Физик в гостях у политика

Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.


Москва в Москве

Автор увлекательно рассказывает о новых фактах в истории нашей столицы, которые удалось установить в результате археологических раскопок последнего времени. Книга адресована массовому читателю. Московский рабочий, 1982 г. Издание 2-е, дополненное и переработанное.


Во что мы верим, но не можем доказать

Книга о самых невероятных, оригинальных научно-фантастических идеях, которые в будущем, возможно, станут реальностью. О том, как самые разные ученые, оказывается, способны поверить в любые гипотезы и поведать всем нам о своих идеях, связанных с новыми областями эволюционной биологии, генетики, компьютерных наук, нейрофизиологии, психологии и физики…


Часы, по которым мы живем. От солнечных часов до лунного календаря

В этой книге А. Азимов рассказывает о том, пак я древности измеряли и отсчитывали время с помощью Луны, Солнца и звезд. Автор приводит интересные факты о солнечным затмениях, изгибах часовых поясов, временах гола, параллелях, к меридианах. Книга предназначена для широкого круга читателей.


Падение кошки и другие зоосенсации

Эдуар Лоне, известный французский журналист и популяризатор науки, рассказывает в своей увлекательной, полной доброго юмора и тонких параллелей, книге о некоторых недавних открытиях зоологов. Лоне приглашает читателя совершить экскурсию в удивительный мир, где живут слоны-пьяницы, жирафы-гипертоники, истинно британские блохи, свободолюбивые мухи и другие не менее симпатичные существа, порой очень похожие на людей.


Вам жить в XXI веке

Открывают сборник статьи крупных ученых нашей страны. Они знакомят читателей с прогнозами и свершениями и области науки и техники — готовят сегодняшних школьников к будущей работе и условиях научно-технического прогресса. Узнают читатели и о новых технологиях, созданных советскими специалистами и специалистами стран социалистического содружества. В книге также помещены очерки о выдающихся ученых прошлого — тех, кто заложил фундамент современной науки.Составитель Г.А.ЮРКИНАВ сборнике использованы материалы из центральных газет и журналов.