Если бы числа могли говорить. Гаусс. Теория чисел - [12]
Название докторской диссертации Гаусса звучит так: Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse («Новое доказательство теоремы, в которой говорится, что любая алгебраическая рациональная функция может быть разложена на множители первой или второй степени с действительными коэффициентами»). В этом заголовке содержится небольшая ошибка, которая принесла молодому Гауссу еще больше величия: это доказательство было не «новым», а первым в истории полным доказательством основной теоремы алгебры.
Математика — царица наук, а арифметика — царица математики.
Карл Фридрих Гаусс
В этой теореме, в том виде, в каком ее формулировал Гаусс (затем она была обобщена), утверждается, что любой многочлен от одной переменной имеет столько корней, сколько показывает его степень, допуская, что эти корни могут быть множественными. Многочлен Р — это выражение вида Р(x) = a>nx>n + a>n-1x>n-1 + ... + а>1х + a>0, где коэффициенты а>n, а>n-1, ... , a>1, a>0 — действительные числа. Степень Р — это наибольший показатель степени, в которую нужно возвести переменную х, то есть n. Корни многочлена — это точки, в которых он равен нулю, то есть такие точки х, в которых Р(х) = 0. В качестве естественного следствия из теоремы можно сделать вывод, что любой многочлен степени n с n корнями, необязательно разными, которые мы обозначим r>1, r>2,..., r>n, можно разложить как произведение одночленов вида:
Р(х) = (x-r>1) · (x - r>2) · ... · (x - r>n).
Задачи такого типа часто встречаются в повседневной жизни, и их решение заботило математиков с самого начала развития этой науки. Очевидно, что задачи типа x - 3 = 0 имеют единственный корень, то есть 3. Если мы возьмем многочлен x + 3 = 0, то для его решения нам придется учитывать отрицательные числа, поскольку решение — это -3. Именно по этой причине потребовалось расширить множество натуральных чисел до множества целых чисел, которое включает в себя и отрицательные числа. Вавилоняне и египтяне осознали, что для решения простых уравнений первой степени нужно новое расширение, в данном случае это дроби, поскольку решением уравнения 3x — 2 = 0 является величина 2/3. Множество, которое включало в себя дроби, назвали множеством рациональных чисел.
С увеличением показателя степени многочлена все усложняется, и такое простое уравнение, как х²-2 = 0, привело греков к великому открытию, поскольку решение нельзя было выразить в виде дроби. Действительно, методом от противного было найдено аналитическое доказательство того, что sqrt(2) не является рациональным числом.
Находчивые древнегреческие математики предложили доказательство нерациональности sqrt(2), пользуясь методом от противного, который состоит в том, чтобы предположить противоположное тому, что мы хотим доказать, и прийти к логическому противоречию. Предположим, что sqrt(2) рационально, то есть его можно выразить с помощью некоторой дроби p/q. Теперь предположим, что дробь невозможно сократить, то есть что р и q — взаимно простые. Иначе было бы достаточноразделить оба элемента дроби на наибольший общий делитель. Так как sqrt(2) = p/q, получается, что, если возвести в квадрат оба члена, то 2 = p²/q², значит, 2q² = p², то есть р² — это четное число, и, следовательно, таким же является р. Так как р — четное число, то существует натуральное число k, такое, что р = 2k. Если подставить новое значение р в наше уравнение, получится, что 2q² = 4k². Это предполагает, что q² = 2k², то есть q -— также четное. Но это означает, что нашу исходную дробь можно сократить, а это противоречит условиям, следовательно, предположение, что sqrt(2) — рациональное число, ложно.
Столкнувшись с невозможностью выразить такие числа, как sqrt(2), в виде дроби, математики назвали их иррациональными. Несмотря на сложности, связанные с их точной записью, иррациональные числа имеют реальное значение, поскольку их можно представить как точки на числовой прямой. Число sqrt(2) находится между 1,4 и 1,5, и если построить прямоугольный треугольник, катеты которого будут равны 1, мы знаем, что его гипотенуза равна sqrt(2) по теореме Пифагора. Множество чисел, в которое включались бы и рациональные, и иррациональные числа, назвали действительными числами, и они представлены на числовой прямой.
Проблема поиска корней многочлена усложнялась, когда речь шла о том, чтобы найти решения таких с виду простых уравнений, как х² + 1 = 0. Казалось очевидным, что ни одно число, возведенное в квадрат, не может дать в результате отрицательное число, каким бы ни было исходное число, положительным или отрицательным. Итак, пришлось создать новый тип чисел, которые позволили бы решить уравнения этого типа. Новое число, sqrt(-1), было названо мнимым числом и обозначено как г. Создание, казалось бы, из ничего, решения для этого уравнения кажется обманом: почему бы не признать, что у уравнения просто нет решения? Но ответ в том, что найденное решение вызвало большой прогресс арифметики и при этом оно не содержит логических противоречий. Самолеты никогда не поднялись бы в воздух, если бы инженеры не пользовались мнимыми числами. Итак, если мы будем использовать новое обозначение и решим уравнение х² +1=0 как квадратный многочлен вида aх² + bх + с = 0, с помощью известной формулы
Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.
Автор увлекательно рассказывает о новых фактах в истории нашей столицы, которые удалось установить в результате археологических раскопок последнего времени. Книга адресована массовому читателю. Московский рабочий, 1982 г. Издание 2-е, дополненное и переработанное.
Книга о самых невероятных, оригинальных научно-фантастических идеях, которые в будущем, возможно, станут реальностью. О том, как самые разные ученые, оказывается, способны поверить в любые гипотезы и поведать всем нам о своих идеях, связанных с новыми областями эволюционной биологии, генетики, компьютерных наук, нейрофизиологии, психологии и физики…
В этой книге А. Азимов рассказывает о том, пак я древности измеряли и отсчитывали время с помощью Луны, Солнца и звезд. Автор приводит интересные факты о солнечным затмениях, изгибах часовых поясов, временах гола, параллелях, к меридианах. Книга предназначена для широкого круга читателей.
Эдуар Лоне, известный французский журналист и популяризатор науки, рассказывает в своей увлекательной, полной доброго юмора и тонких параллелей, книге о некоторых недавних открытиях зоологов. Лоне приглашает читателя совершить экскурсию в удивительный мир, где живут слоны-пьяницы, жирафы-гипертоники, истинно британские блохи, свободолюбивые мухи и другие не менее симпатичные существа, порой очень похожие на людей.
Открывают сборник статьи крупных ученых нашей страны. Они знакомят читателей с прогнозами и свершениями и области науки и техники — готовят сегодняшних школьников к будущей работе и условиях научно-технического прогресса. Узнают читатели и о новых технологиях, созданных советскими специалистами и специалистами стран социалистического содружества. В книге также помещены очерки о выдающихся ученых прошлого — тех, кто заложил фундамент современной науки.Составитель Г.А.ЮРКИНАВ сборнике использованы материалы из центральных газет и журналов.