Энергия и жизнь - [33]
Одним из самых серьезных доводов против симбиотической теории считалось отсутствие фагоцитоза или пиноцитоза в мире прокариот. Полагалось несомненным, что внутрь прокариотной клетки не может проникнуть другая клетка. И вот в последние десятилетия были обнаружены бактерии рода бделловибрио, которые являются облигатными хищниками, питающимися другими бактериями! Причем оказалось, что они широко распространены в микробном мире и играют заметную роль в биосфере — выполняют задачи санитаров, разрушая микробные клетки в загрязненных водоемах. Переход от антагонизма к сосуществованию более «мирного» типа — вещь, часто встречающаяся и хорошо изученная.
Вполне возможно, что симбиотические отношения возникали в эволюции неоднократно. Симбиоз мог распадаться, особенно на ранних этапах сосуществования организмов, если отдельное развитие было более эффективным. Но союз митохондрий и нуклеоцитоплазмы оказался не только счастливым, но и «вечным». Особо подчеркнем его энергетические преимущества для обеих сторон. Анаэробная нуклеоцитоплазма была наименее специализированным и более крупным предшественником. Но для защиты ею ДНК от высокой температуры и кислотности у нее имелись белки особого класса — гистоны. Анаэробный хозяин мог использовать только экзогенные сахара, гликолитическим путем расщепляя их до трехуглеродных соединений и получая только две богатые энергией молекулы АТФ из каждой молекулы сахара. Эти трехуглеродные «отходы» стали пищей для митохондрий, которые способны расщеплять их до углекислоты и воды, получая гораздо больше энергии через цикл трикарбоновых кислот и систему транспорта электронов (по 18 молекул АТФ из каждого трехуглеродного фрагмента). Общий итог кооперации — 38 энергетических единиц на единицу субстрата (38=18·2+2) — оказался баснословно выигрышным. Такова энергетическая формула «счастья». Поэтому для хозяйской клетки было выгодно оберегать приобретенные фабрики энергии, давать им возможность эффективно трудиться, избавляя их от дополнительных функций.
2. Симбиоз второй — образование тригеномной структуры (наиболее спорный аспект последовательных симбиозов). По-видимому, он имел место после первого симбиоза крупной анаэробной амебоидной клетки с мелкими аэробными, т. е. с протомитохондриями. Второй акт симбиоза заключался в объединении такого митохондриально-цитоплазменного комплекса со спирохетами или спироплазмами, которые прикреплялись к этому комплексу для питания. Спирохеты обладали микротрубочками, которые в результате совместной эволюции составили основу структур клетки хозяина, появился митоз.
Многое в этой гипотезе спорно и многое не доказано, но привлекает в ней опять же полное отсутствие телеологичности. Мы не будем разбирать более подробно схемы развития этого типа симбиоза. Подчеркнем некоторые важные аспекты с позиций энергетического подхода. Во-первых, приобретение подвижности в результате этого симбиоза, способности к быстрому перемещению оказалось очень эффективным для поиска пищи и проникновения в новые места обитания, что соответствует ЭПЭР.
Во-вторых, что более существенно, мы уже говорили об энергетическом преимуществе первого симбиоза. Клетки, его осуществившие, получили возможность укрупниться, стать больше по размерам, чем каждый прокариотный партнер, т. е. «улучшить» отношение поверхность — объем, и, в частности, резко повысить компартментализацию структуры. Это привело к возможности разделения функций, т. е. к повышению специализации. Но возрастание размеров клеток и разнообразие их компонентов потребовало и большего количества кодировавших их нуклеиновых кислот, особенно ДНК. Поэтому и понадобились эффективные механизмы равного распределения ее между дочерними клетками. Наиболее экономичной по веществу и энергетике оказывается стратегия выработки контролирующих деление клетки систем, и, таким образом, очевидно возрастание роли информационных систем на этом этапе.
3. Симбиоз третий — это очередной этап в серии последовательных симбиозов, в результате которого в клетке развился тетрагеном. Приобретение способности к фотосинтезу произошло в результате объединения сформировавшейся в двух первых симбиозах эукариотной клетки и фотосинтезирующих прокариотных клеток. Формула эукариот-фотосинтетиков проста: эукариот + фотосинтезирующая прокариота = водоросль или растение [Маргелис, 1983].
Улучшение энергетики, вернее, приобретение новой функции чисто энергетического плана — фотосинтеза в результате такого объединения совершенно очевидно.
4. Симбиоз четвертый, пятый и т. д.— образование полигеномных организмов. К настоящему времени все яснее, что симбиозы имеют гораздо большее значение в эволюции, чем это было принято считать. Симбиоз, по утверждению Л. Маргелис, как объединение и слияние различных особей может рассматриваться в качестве одной из форм парасексуальности — объединения и слияния отдельных особей. Он не менее, а может быть, и более важен для эволюции, чем половой процесс. У организмов, возникших путем слияния двух особей (или их клеток) в результате полового процесса, родители имеют очень близких предков; а при симбиозе предки гораздо более отдалены. И самое главное — они могут выполнять несхожие, дополняющие друг друга функции. Очень существенно, что стабильные симбиотические ассоциации обладают приспособленностью большей, чем каждый партнер в отдельности. Это означает, что симбионты могут оставлять больше потомства при совместном, чем при раздельном, развитии и естественный отбор действует на их гены как на единый геном. Функциональная гибкость симбиоза заключается в том, что взаимодействие партнеров не является абсолютно жестким, если оно не столь выгодно, оно может регулироваться соотношением доли партнеров, вплоть до полного распада ассоциации. Особенно часто это возможно, если союз «молод» по времени и путь совместной эволюции был недолгим. Это хорошо видно на примере симбиозов последующих номеров, типа союзов эукариот с эукариотами. Кроме того, разделение функций может быть столь полезным и выгодным, что основу ассоциации может составлять обмен информацией, а не веществом.
Разве можно представить нашу жизнь без книг? Они сопровождают людей повсюду уже несколько тысяч лет. С ними связано множество любопытнейших историй: ловкого вора выдала сова, жившая в библиотеке; мальчик написал стихи за придуманного поэта; азартный коллекционер сжег редкую книгу; знаменитый писатель выдал свои сочинения за чужие; авантюристы дописали Гоголя и Мольера; автор «Робинзона Крузо» взял «интервью» у преступника, а Проспер Мериме одурачил Пушкина. Одни «книжные» истории похожи на настоящие детективы, другие вызывают улыбку, но все они оставили яркий след в истории.
В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.
Издание представляет собой исследование восточной литературы, искусства, археологических находок, архитектурных памятников. Повествование о могуществе и исчезновении городов и царств шумеров, хеттов, ассирийцев, скифов, индийцев сопровождается черно-белыми и цветными фотоиллюстрациями. В конце издания представлена хронологическая таблица заселения Древнего Востока. Красиво изданная, богато иллюстрированная книга для среднего и старшего возраста. Цветные полностраничные репродукции и черно-белые в тексте на каждой странице. На переплете: фрагмент выкопанной в Уре мозаичной плиты «Шумерское войско в походе». Издание второе.
Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.
Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
В книге на примере лейкоза человека рассмотрены в научно-популярном стиле и с позиции биофизики сложных процессов проблема рака, его причины, стадии развития и возможности предупреждения, ранней диагностики и лечения. Особое внимание уделено предраковым и предлейкозным состояниям организма, когда еще эффективна профилактика и еще не поздно изменить сложившиеся традиции и привычки в отношении своего поведения, характера питания и образа жизни, не способствующие укреплению противораковой устойчивости организма.Книга предназначена для широкого круга читателей, интересующихся современными вопросами медицины и биологии.
Книга посвящена фундаментальным механизмам старения и на их основе поиску путей продления жизни. Изложены современные данные о молекулярных, клеточных, системных механизмах старения. Обсуждается связь между старением и развитием болезней сердечно-сосудистой системы, рака, диабета. Подробно анализируются различные подходы к увеличению продолжительности жизни — ограниченная диета, двигательная активность, изменение температуры тела, физиологически активные вещества, энтеросорбция и др. Приводится комплекс мер по предупреждению преждевременного старения.
В истории развития органического мира Земли было несколько важнейших событий, таких, как возникновение жизни, появление эвкариот, затем многоклеточных организмов. 600 миллионов лет назад многоклеточные животные впервые получают возможность строить скелет, и о тех пор органический мир Земли приобретает все более сходные с современностью черты. Об условиях, в которых произошло это важное событие, и гипотезах о причинах появления скелета у животных идет речь в предлагаемой читателю книге.
Книга члена-корреспондента АН СССР, доктора медицинских наук П. В. Симонова и кандидата искусствоведения П. М. Ершова посвящена популярному изложению естественнонаучных основ индивидуальных особенностей человека в свете учения И. П. Павлова о высшей нервной деятельности и достижений современной психофизиологии. ряде глав использовано творческое наследие К. С. Станиславского, касающееся воссоздания характеров действующих лиц и принципов актерского перевоплощения в индивидуальность изображаемого персонажа.Книга представляет интерес для самого широкого круга читателей — физиологов, психологов, педагогов, работников искусства, для каждого, кто в своей практической деятельности связан с вопросами воспитания, подбора, профессиональной ориентации людей.