Энергия и жизнь - [12]

Шрифт
Интервал

Великий классификатор и систематик живой природы К. Линней в середине XVIII в. вычислил, что «если бы однолетнее растение производило только пару семян („Нет ни одного растения, которое было бы так неплодовито“, — отмечает Ч. Дарвин, который приводит эти вычисления Линнея), его потомки на следующий год снова по паре семян и т.д., то в 20 лет было бы миллион растений» (цит. по: [Дарвин, 1912, с. 56]).

Сам Ч. Дарвин находился под глубоким впечатлением от высокой скорости размножения живых организмов в геометрической прогрессии. «...Все органические вещества естественно возрастают в такой прогрессии, что, если бы они не погибали, земля вскоре была бы покрыта потомством одной единственной пары... Даже медленно размножающийся человек удваивает численность в 25 лет, и по этой пропорции менее чем в тысячу лет буквально не осталось бы для его потомства места, где можно было бы поставить ногу» [Там же, с. 56].

Наиболее впечатляющие цифры можно привести из кинетики роста микроорганизмов. Если взять среднюю массу бактерии равной 6 · 10>—13 г и сравнить ее с массой Земли, равной 6 · 10>27 г, то получим величину, в 10>40 раз меньшую. Однако прирост биомассы бактерий в такое число раз при размножении простым делением можно получить примерно за 130 последовательных поколений (10>40 = 2>130). Если длительность поколения принять за 20 мин (это — средние данные для кишечной палочки на богатой среде), то получим необходимое время — несколько менее 2 сут. Таким образом, при хороших условиях размножения потомки одной бактериальной клетки способны в течение всего лишь 2 сут создать биомассу по величине, равную массе всей планеты, а по объему превышающую ее в пять раз с лишним. Поистине огромен потенциал живой приводы к размножению!

Мы уже говорили, что биохимическую основу, обеспечивающую высокие скорости роста и развития клеток, организмов, популяций, составляют хорошо сбалансированные системы реакций воспроизводства (автокатализа) макромолекул, прежде всего нуклеиновых кислот и ферментов. Например, эффективность иона железа как катализатора реакции разложения перекиси водорода возрастает на 9—10 порядков (т. е. в миллиарды раз), если он в составе молекулы порфирина входит в фермент — каталазу. Примерно такие же, т. е. в сотни миллионов и миллиарды раз большие по сравнению со скоростями реакций в неживой природе, скорости процессов, протекающих на ферментативной основе в живых системах.

В живых организмах «... скорость химической реакции почти всегда достигает предельного значения, которое определяется законами физики. Во всех случаях обнаруживают оптимальное соотношение тенденции „как можно быстрее“ и „настолько точно, как это нужно“»,— пишут в книге «Игра жизни» известный исследователь физико-химических основ эволюции лауреат Нобелевской премии Манфред Эйген и его соавтор Роберт Винклер [М. 1979, с. 96].

Однако возможности неограниченного размножения не могут реализоваться: и для популяционного уровня, и выше «взрывы» численностей имеют место гораздо реже, чем поддержание стационарных уровней, и бывают кратковременными. Живая природа упирается в ограничение косного окружения. «Напор жизни» (по выражению В. И. Вернадского), нехватка вещества загоняют ее в условия сильного лимитирования. (Не зря существует выражение: «Голод правит миром».)

Живая система использует все, что может взять у среды. Главная черта, характеризующая «хитрость» живой природы, ее «умение» справляться с лимитированием по веществу при постоянной накачке потоком солнечной энергии,— это повсеместное развитие циклов вещества. Рассмотрим некоторые примеры циклов вещества в живой природе — от молекулярных структур клетки до биосферы в целом — на разных уровнях ее организации.

5.3. Живые циклы: от электронного до биосферного

«„Wheels within wheels within wheels“ — циклы, включающие циклы, которые, в свою очередь, включают циклы,— так определяется биологический процесс в целом»,— пишут в книге «Наука о живом» известные биологи П. и Дж. Медавары [М., 1983]. Мы начнем описание этих циклов с самого основного — энергодающего.

Представим простую схему протонного (электронного) цикла (рис. 6). С помощью белков клетка способна использовать энергию света, перенося водородные ионы и, соответственно, электроны через мембрану. Таким способом создается разность потенциалов, электрохимический градиент. А он и будет движущей силой процесса, в данном случае химического. Его величина, порядка 0,25 В, вполне достаточна, чтобы компенсировать потери энергии при синтезе АТФ из АДФ. На каждую синтезированную молекулу АТФ, этой энергетической валюты, «расходуется» два Н>+, т. е. два протона обратно возвращаются через мембрану. Так работает цикл. Энергетические ресурсы клетки могут быть разнообразными для авто- и гетеротрофов, в последнее время много работают с бактериородопсином как источником электрохимического потенциала. Этот светочувствительный белок наряду с широко известным хлорофиллом также можно назвать генератором электрического тока. У эукариотных гетеротрофных клеток энергодающим источником является глюкоза, а образование АТФ связано с мембранами митохондрий. Последние образно называют «электростанциями клетки». Теперь, в связи с пониманием протонного цикла, оказалось, что это вовсе не метафора. А в целом, по энергетике, автотрофную клетку можно назвать «фотоэлектрическим элементом», а гетеротрофную — «электрохимическим элементом» на основе циклов.


Рекомендуем почитать
Гидросфера

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Получение энергии. Лиза Мейтнер. Расщепление ядра

Женщина, еврейка и ученый — непростая комбинация для бурного XX века. Австрийка по происхождению, Лиза Мейтнер всю жизнь встречала снисходительность и даже презрение со стороны коллег-мужчин и страдала от преследований нацистов. Ее сотрудничество с немецким химиком Отто Ганом продолжалось более трех десятилетий и увенчалось открытием нового элемента — протактиния — и доказательством возможности расщепления ядра. Однако, несмотря на этот вклад, Мейтнер было отказано в Нобелевской премии. Она всегда отстаивала необходимость мирного использования ядерной энергии, в изучении которой сыграла столь заметную роль.


Знание-сила, 2008 № 06 (972)

Ежемесячный научно-популярный и научно-художественный журнал.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Биофизика познает рак

В книге на примере лейкоза человека рассмотрены в научно-популярном стиле и с позиции биофизики сложных процессов проблема рака, его причины, стадии развития и возможности предупреждения, ранней диагностики и лечения. Особое внимание уделено предраковым и предлейкозным состояниям организма, когда еще эффективна профилактика и еще не поздно изменить сложившиеся традиции и привычки в отношении своего поведения, характера питания и образа жизни, не способствующие укреплению противораковой устойчивости организма.Книга предназначена для широкого круга читателей, интересующихся современными вопросами медицины и биологии.


Старение и увеличение продолжительности жизни

Книга посвящена фундаментальным механизмам старения и на их основе поиску путей продления жизни. Изложены современные данные о молекулярных, клеточных, системных механизмах старения. Обсуждается связь между старением и развитием болезней сердечно-сосудистой системы, рака, диабета. Подробно анализируются различные подходы к увеличению продолжительности жизни — ограниченная диета, двигательная активность, изменение температуры тела, физиологически активные вещества, энтеросорбция и др. Приводится комплекс мер по предупреждению преждевременного старения.


Что произошло 600 миллионов лет назад

В истории развития органического мира Земли было несколько важнейших событий, таких, как возникновение жизни, появление эвкариот, затем многоклеточных организмов. 600 миллионов лет назад многоклеточные животные впервые получают возможность строить скелет, и о тех пор органический мир Земли приобретает все более сходные с современностью черты. Об условиях, в которых произошло это важное событие, и гипотезах о причинах появления скелета у животных идет речь в предлагаемой читателю книге.


Темперамент. Характер. Личность

Книга члена-корреспондента АН СССР, доктора медицинских наук П. В. Симонова и кандидата искусствоведения П. М. Ершова посвящена популярному изложению естественнонаучных основ индивидуальных особенностей человека в свете учения И. П. Павлова о высшей нервной деятельности и достижений современной психофизиологии. ряде глав использовано творческое наследие К. С. Станиславского, касающееся воссоздания характеров действующих лиц и принципов актерского перевоплощения в индивидуальность изображаемого персонажа.Книга представляет интерес для самого широкого круга читателей — физиологов, психологов, педагогов, работников искусства, для каждого, кто в своей практической деятельности связан с вопросами воспитания, подбора, профессиональной ориентации людей.