Электроны - [7]

Шрифт
Интервал

В предыдущих параграфах я записал в виде пропорциональностей, а не равенств, лишь две формулы: ту, которая связывает массу вещества, осаждаемого на электроде, с количеством электричества, и закон Кулона. Сделал я это не случайно, а по той причине, что физики пока неохотно переходят к принятой, как закон, между народной системе СИ и продолжают еще (правда, под давлением редакторов книг и статей во все меньшей степени) пользоваться так называемой абсолютной системой единиц, в которой величина К в формуле Кулона для взаимодействия зарядов в вакууме кладется равной единице. Поступив так, мы предопределяем значение так называемой «абсолютной» единицы количества электричества (заряд равен единице, если два одинаковых заряда, расположенных на единичном расстоянии, взаимодействуют с единичной силой).

Если быть последовательным, то, меряя массу в граммах, вам пришлось бы вычислить значение коэффициента k в законе электролиза, указав, сколько вещества выделяется на электроде при прохождении одной абсолютной единицы заряда. Однако не листайте страницы учебников, вы не найдете такой величины для этого коэффициента. Зная категорическое нежелание техников отказаться от ампера и кулона, физики подставляли в формулу электролиза то число, которое определяло массу вещества, выделявшуюся при прохождении через жидкость одного кулона электричества. В книгах фигурировали две единицы для одной и той же величины. При этом ясно, что пользоваться той или другой из них было удобно в совсем разных случаях, ибо кулон равняется трем миллиардам абсолютных единиц.

Конечно, удобно положить К равным единице, но техники обращали внимание на то, что в уравнениях для силового потока, емкости конденсатора и в других формулах остается никому не нужный коэффициент 4π, и утверждали, что было бы полезным от него избавиться.

Как обычно бывает, победа осталась за лицами, более близкими к практике, чем к теории; принятая ныне система пошла по тому пути, которому техники следовали уже давно. Сторонники системы СИ настояли и на том, чтобы пользоваться одной единицей энергии во всех областях науки, а также потребовали, чтобы в качестве единственного электрического понятия, принятого за основное, фигурировала бы сила тока.

Таким образом, мы входим в учение об электричестве с единицей энергии джоуль. В качестве единицы количества электричества выбираем кулон, равный ампер-секунде. Предлагаем определять ампер по силе взаимодействия токов. Это определение (мы его приведем на стр. 91 в главе, посвященной электромагнетизму) подобрано так, чтобы коэффициент k в формуле электролиза остался тем, к которому все давно уже привыкли. Но все же надо уяснить себе, что этот коэффициент в системе СИ не определяет величину кулона. Если точность измерения возрастет, то мы будем обязаны изменить эту величину так, чтобы сохранить определение ампера (правда, я не думаю, что это время наступит, ибо не представляю себе, чтобы точность измерения электродинамических сил превышала бы точность измерения массы).

Далее система СИ следует по тому пути, по которому я заставил шагать нашего исследователя. Появляется единица напряжения вольт, равная джоулю, поделенному на кулон; единица сопротивления ом, равная вольту, поделенному на ампер; единица удельного сопротивления — ом, умноженный на метр…

Но теперь мы добираемся до закона Кулона, и видим, что коэффициентом К мы уже не вправе распоряжаться. Сила измеряется в ньютонах, расстояние — в метрах, заряд — в кулонах. Коэффициент К становится размерным и имеет некую величину, которую надо определять опытным путем.

Закон Кулона редко бывает нужен, а выражение емкости конденсатора является рабочей формулой во многих технических расчетах. Чтобы избавиться от множителя 4π в формулах электрического потока, емкости конденсатора и многих других, техники уже давно заменили коэффициент К выражением 1/4π∙ε>0. По вполне понятным причинам ε>0 можно назвать диэлектрической проницаемостью вакуума. Она оказывается равной

ε>0 = 8,85∙10>-12 Кл>2/(Н∙м>2).

Так что теперь поток силовых линий выражается формулой

(1/ε>0)∙(q>1 + q>2 +…),

а емкость конденсатора записывается так:

С = ε∙ε>0S/d.

Единица емкости одна фарада равняется кулону, поделенному на вольт.


КАК РАЗВИВАЛОСЬ УЧЕНИЕ ОБ ЭЛЕКТРИЧЕСТВЕ

Учение об электричестве развивалось совсем не в той последовательности, в которой действовал наш «обобщенный» исследователь!

Электростатические явления были известны в далекой древности. Трудно сказать, было ли греческим ученым известно, какие тела, кроме янтаря (по-гречески «электрон» — наименование янтаря) приобретают, после того как их потереть, особые свойства и притягивают к себе соломинки. Лишь в семнадцатом веке Уильям Гильберт показывает, что этим странным свойством обладают алмаз, сургуч, сера, квасцы и многие другие тела. Этот замечательный ученый видимо первый создал приборы, с помощью которых можно было наблюдать взаимодействие наэлектризованных тел. В восемнадцатом веке уже известно, что некоторые тела способны удерживать заряды, а по другим телам заряды «стекают». Мало у кого есть сомнения, что электричество — это что-то вроде жидкости. Создаются первые электростатические машины, с помощью которых можно извлекать искры и приводить в «содрогание» цепочку людей, которые держат друг друга за руки, а один из них дотрагивается до проводника действующей электрической машины. Придворное общество многих стран посещает лаборатории ученых, как цирк. А ученые, в свою очередь, стараются всемерно театрализовать явления.


Еще от автора Александр Исаакович Китайгородский
Молекулы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.


Как измеряются расстояния между атомами в кристаллах

О рентгеноструктурном анализе атомной структуры кристаллов.


Проблема № 2

Статья о явлении сверхпроводимости из журнала «Техника – молодежи» № 11, 1975.


Фотоны и ядра

В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.


Предисловие к русскому изданию книги «Парапсихология» (Ч.Хэнзел)

…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.


Физические  тела

Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.