Электроны - [54]
Так же точно и корпускулярный аспект электромагнитного поля наблюдается не всегда. Было бы, конечно, легче жить, если бы условия, в которых эти два аспекта проявляются, были бы взаимно исключающими. Но нет. Дело обстоит не так. Даже описывая один и тот же эксперимент, зачастую приходится говорить одновременно на двух языках.
Все же более просто (а впрочем, лучше сказать — раньше было проще) наблюдать корпускулярный аспект электромагнитного излучения в случае коротких волн. В ионизационной камере и других аналогичных приборах можно наблюдать столкновение частицы электромагнитного излучения с электроном или иной «честной» частицей. Столкновение может происходить так, как встреча биллиардных шаров. Понять такое поведение, привлекая на помощь волновой аспект электромагнитного излучения, совершенно невозможно.
Рассмотрим возникновение электромагнитного излучения на языке теории Максвелла. Система зарядов колеблемся с какой-то частотой. В такт этим колебаниям меняется электромагнитное поле. Частота колебаний поля v, поделенная на скорость распространения 300 000 км/с, дает нам значение длины волны излучения.
Если перейти на язык квантовой физики, то это же явление будет описано следующим образом. Имеется система зарядов, для которой характерна система дискретных уровней энергии. По какой-то причине эта система пришла в возбужденное состояние, но в этом состоянии прожила недолго и перешла на более низкий уровень. Выделившаяся при этом энергия E>2 — E>1 = h∙v излучается в виде частицы, носящей название фотона. С постоянной h мы уже знакомы (стр. 100). Это та же постоянная Планка.
Если уровни энергии системы расположены очень близко друг к другу, то фотон обладает малой энергией, малой частотой и, следовательно, большой длиной волны. В этом случае квантовый корпускулярный аспект электромагнитного поля мало заметен и обнаруживает себя лишь в явлениях поглощения, связанных с очень малыми изменениями энергии электронов или атомных ядер (магнитный резонанс). Столкновений фотона с частицами, подобных удару биллиардных шаров, в случае волн большой длины наблюдать не удается.
Расскажем вкратце о тех фактах, которые, так сказать, приперли физиков к стене и заставили согласиться с тем, что волновая теория, (в которую уже много десятков лет верили, как в полную и исчерпывающую истину) не в состоянии объяснить все факты, касающиеся электромагнитных полей. Фактов таких очень много, но пока что мы ограничимся явлением, которое носит название фотоэлектрического эффекта. После того как читатель согласится с тем, что без корпускулярного аспекта картина электромагнитного поля не может быть создана, мы обратимся к замечательным опытам Герца, из которых выросла вся радиотехника, и покажем, каким образом волновой аспект электромагнитного поля был обрисован не только в общих чертах, но и в деталях.
Звучное и красивое название «фотон» появилось несколько позже, чем произведение постоянной Планка h на частоту электромагнитной волны v. Как мы сказали выше, переход системы из одного энергетического состояния в другое сопровождается поглощением или излучением порции энергии hv. К такому заключению на рубеже нашего и предыдущего столетий пришел замечательный немецкий физик Макс Планк. Он показал, что только таким способом удается истолковать излучение раскаленных тел. Рассуждения относились к электромагнитным волнам, получаемым нерадиотехническим способом. В то время еще не было доказано и не было всеми признано, что то, что справедливо для света, верно и для радиоволн, хотя законы Максвелла указывали со всей определенностью, что между радиоволнами и другими электромагнитными волнами, в том числе светом, нет никакого принципиального различия. Понимание и экспериментальные доказательства универсальной справедливости утверждения Планка пришли позже.
В работе Планка шла речь об излучении света порциями, т. е. квантами. Однако в ней не отмечалось, что квантовый характер излучения делает неизбежным введение в рассмотрение корпускулярного аспекта электромагнитного поля. Да, говорилось в то время, поле излучается порциями, но порция есть некоторый цуг волн.
Важнейший шаг, т. е. признание того, что излученная порция энергии hv есть энергия частицы, которую сразу окрестили фотоном, был сделан Эйнштейном, показавшим, что только с помощью корпускулярных представлений можно объяснить явление фотоэлектрического эффекта, т. е. выбивание электронов из твердых тел под действием света.
На рис. 5.4 изображена схема, с помощью которой в конце прошлого века началось детальное изучение явления, названного внешним фотоэффектом.
Впервые на то, что свет как-то влияет на электроды вакуумной трубки, указал, видимо, Генрих Герц в 1888 г. Работая одновременно, Сванте Аррениус (1859–1927), Вильгельм Гальвакс (1859–1922), Аугусто Риги (1850–1920) и прекрасный русский физик Александр Григорьевич Столетов (1839–1896) показали, что освещение катода приводит к возникновению тока. Если к показанной на рисунке трубке (ее называют фотоэлементом) напряжение не приложено, то лишь незначительная часть электронов, выбитых светом из катода, доберется до противоположного электрода. Слабое подгоняющее напряжение (минус на фотокатоде) увеличит ток. В конце концов ток достигнет насыщения: все электроны (число которых приданной температуре вполне определенно) достигают анода.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…
Книга посвящена применению законов теории вероятностей к различным жизненным ситуациям и в разных областях науки. В ней рассказывается, как пользуются законом вероятности физики и кинорежиссеры, селекционеры и юристы, социологи и механики и т.д.
6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.
В книге описываются результаты экспериментов по изучению оригинального квантово-волнового метода механического воздействия на кристаллы алмаза. Проведенные эксперименты открывают новые свойства и особенности этих кристаллов, находящихся в сильнонеравновесных условиях обработки. Показана принципиальная возможность возникновения необратимых сильнонеравновесных явлений в кристаллах алмаза при формировании в их объеме волновых потоков с винтовым возмущением волнового фронта. Взаимодействие этих волновых потоков в объеме алмаза приводит как к изменению дефектно-примесной структуры алмаза, снятию внутренних напряжений, так и к формированию морфологического рельефа поверхности кристалла без непосредственного касания всей его поверхности инструментом.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.