Электроника в вопросах и ответах - [4]
Что такое полупроводник типа n?
В полупроводнике типа n преобладает электронный ток. Нарушения кристаллической структуры (рис. 1.8, а) достигают введением в кристалл чистого полупроводника (кремния или германия), примесей донорного типа (например, мышьяка), т. е. элемента, имеющего на внешней оболочке на один валентный электрон больше, чем германий и кремний. При этом в кристаллической решетке остается один электрон, который может легко перейти в зону проводимости и участвовать в прохождении тока как донорный или неосновной носитель.
В кристаллической решетке сохраняется ион с положительным зарядом. Следует подчеркнуть, что этот положительный ион в полупроводнике типа n неподвижный, а следовательно, не участвует в протекании тока в отличие от дырок, возникающих при собственной проводимости. В зонной модели полупроводника типа n (рис. 1.8, б) введение донорной примеси вызывает возникновение дополнительного энергетического уровня между зоной проводимости и валентной зоной.
Рис. 1.8. Плоская (а) и зонная (б) модели кристаллической решетки полупроводника типа n
Разность энергий между дополнительным уровнем и зоной проводимости настолько мала (для кремниевого полупроводника она составляет около 0,05 эВ), что электрон может легко перейти с этого дополнительного уровня в зону проводимости. Положительный ион, образовавшийся при отрыве электрона от атома примеси, остается фиксированным. Очевидно, что в полупроводнике типа n имеются также дырки, возникшие в процессе образования пар электрон — дырка при собственной проводимости, однако их значительно меньше, чем электронов, возникающих в основном за счет введения примеси. Дырки, существующие в полупроводнике типа n, называются неосновными, а электроны — основными носителями.
Что такое полупроводник типа р?
В полупроводнике типа р в качестве примесей — акцепторов используются атомы элементов, имеющие на внешней оболочке на один электрон меньше, чем кремний и германий, например индий. В кристаллической решетке (рис. 1.9, а) вблизи такого атома в одном из узлов отсутствует одни электрон и возникает дырка, которая заполняется электроном соседнего атома. В результате атом становится неподвижным отрицательным ионом, а дырка может перемещаться далее. Таким образом, в полупроводнике типа р носителями являются подвижные дырки, в то время как отрицательные ионы не принимают участия в прохождении тока.
В зонной модели полупроводника типа р (рис. 1.9, б) введение акцепторной примеси вызывает появление дополнительного энергетического уровня вблизи валентной зоны. Отрицательные ионы остаются неподвижными в узлах решетки.
Рис. 1.9.Плоская (а) и зоновая (б) модели кристаллической решетки полупроводника типа р
Для полупроводника типа р характерна проводимость на основе движения дырок как основных носителей в валентной зоне. Очевидно, что в полупроводнике типа р имеются также электроны, возникшие в процессе образования пар электрон — дырка при собственной проводимости, однако их значительно меньше, чем дырок, образующихся за счет введения примесей. Существующие в полупроводнике типа р электроны называются неосновными, а дырки — основными носителями заряда.
Что такое термоэлектронная эмиссия?
Это эмиссия электронов из твердого (металл, полупроводник) либо жидкого тела (ртуть), вызванная нагревом его до высокой, температуры, которая сообщает электронам энергию, необходимую для того, чтобы они могли покинуть тело и перейти в окружающее пространство — вакуум или газ.
Термоэлектронная эмиссия используется в электронных лампах для получения электронов, создающих электрический ток между электродами лампы.
Что такое фотоэмиссия и фотопроводимость?
Это так называемые фотоэлектрические эффекты: внешний (фотоэмиссия) и внутренний (фотопроводимость). Фотоэмиссия — эмиссия электронов из твердого тела (металла, полупроводника) под воздействием энергии излучения, например видимого света или инфракрасного излучения. Число эмиттированных электронов зависит от интенсивности излучения.
Фотопроводимость обусловливается увеличением электрической проводимости под влиянием лучистой энергии, вызывающей ионизацию атомов в данном теле, в результате чего возрастает число свободных электронов, возникающих в теле.
Фотоэмиссия и фотопроводимость используются в передающих электронно-лучевых трубках, находящихся в телевизионных камерах.
Исчерпываются ли возможности получения свободных электронов термоэмиссией и фотоэмиссией?
Нет. Свободные электроны можно получить и под влиянием сильного электрического поля (автоэлектронная эмиссия), и под влиянием энергии потока электронов твердого тела, это так называемая вторичная эмиссия.
Что такое явление ионизации в газах?
Ионизацией называется процесс разделения атома (или частицы) на электрон и положительный ион. Для электроники представляет интерес ионизация газа, находящегося в электрическом поле. В этом случае свободные электроны перемещаются в направлении положительного электрода (рис. 1.10), и если они обладают соответствующей энергией (напряженность электрического поля соответственно велика), то в результате их соударений с атомами газа снова возникают свободные электроны и положительные ионы, которые при своем движении могут снова выбивать электроны и т. д. Здесь имеет место лавинная ионизация, возникающая под действием сильного электрического поля.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.