Электроника?.. Нет ничего проще! - [114]
Н. — В этом стабилизаторе меня беспокоит то обстоятельство, что транзистор Т>1 выдерживает всю разность напряжений U и Е и одновременно должен рассеивать большую мощность.
Л. — Мы должны взять мощный транзистор и установить его на хорошем радиаторе, способном рассеивать соответствующее количество тепла. Соблюдая необходимые меры, можно легко рассеивать мощность более 30 вт, что превышает возможности большинства ламп, которые ты до сих пор использовал.
Н. — В самом деле это превосходный стабилизатор напряжения, он весьма прост и в то же время обладает широкими возможностями. Вероятно, я в ближайшее время сделаю себе такой стабилизатор.
Л. — Ты получишь очень хорошие результаты, если примешь некоторые меры предосторожности. Не забывай, что стабилизатор не имеет защиты от короткого замыкания. Если ты замкнешь его выводы нагрузкой со слишком низким сопротивлением, транзистор Т>1 может выйти из строя.
Н. — Я полагаю, что для предотвращения таких серьезных неприятностей достаточно поставить плавкий предохранитель.
Л. — Теперь, кажется, есть плавкий предохранитель, реагирующий достаточно быстро. Обычно же транзистор гибнет раньше предохранителя и тем самым спасает его. Если же ты хочешь надежно оградить себя от неприятностей, то нужно дополнить стабилизатор напряжения схемой на трех транзисторах, которая играет роль триггера и почти мгновенно (через несколько микросекунд) после перенапряжения отключает выходное напряжение.
Я не буду ее описывать, так как она отличается некоторой сложностью, но разобраться в ней совсем нетрудно. Все необходимые подробности ты можешь найти в полных схемах самой различной аппаратуры.
Н. — Я с некоторым недоверием отношусь к схемам, которые ты называешь сложными, но понятными, и тем не менее я думаю, что мне удастся с ними справиться. А теперь я хотел бы спросить тебя, что такое сельсин. Я часто слышал это слово и, в частности, встречал его в брошюре о радиолокаторе.
Л. — Сельсин — небольшая электрическая машина, очень похожая на электродвигатель, она служит для передачи угла поворота вала. В неподвижной части (статор) имеются три обмотки (рис. 164) B>1, В>2 и В>3, расположенные под углом 120° друг к другу. Подвижная часть (ротор) имеет только одну обмотку, создающую магнитное поле, перпендикулярное оси ротора. Выводы этой обмотки соединены с двумя кольцами, к которым прижимаются две щетки.
Рис. 164.Пара сельсинов, используемых для передачи угла поворота вала с помощью трех напряжений различной амплитуды, наводимых ротором сельсина-датчика в трех обмотках статора сельсина-приемника.
Н. — Эта машина действительно немного похожа на электродвигатель, но я не вижу, как ее можно использовать для передачи положения.
Л. — Представь себе, что мы имеем два одинаковых сельсина. Я соединил, как это показано на рис. 164, все три обмотки статора первого с соответствующими обмотками второго…
Н. — А, нет! С этим я не согласен. Ты действительно соединил один вывод каждой обмотки первого сельсина с выводом соответствующей обмотки второго, но при этом накоротко замкнул вторые выводы всех трех обмоток первого сельсина и такую же операцию проделал со вторыми выводами обмоток второго сельсина. Я согласился бы с использованием одного общего провода для этих выводов, но при условии, если общий провод одного статора будет соединен с общим проводом другого статора.
Л. — В этом нет необходимости. Можно доказать, что напряжения в обмотках таковы, что их алгебраические суммы постоянно равны нулю. Поэтому нет надобности соединить между собой общие точки этих обмоток. А теперь подадим переменное напряжение в обмотку ротора первого сельсина. Во всех трех обмотках статора появятся наведенные напряжения, амплитуды которых зависят от положения ротора. Эти три напряжения передаются на три соответствующие обмотки второго сельсина и создают три вектора магнитного поля, которые, складываясь, дают одно результирующее, направленное точно так же, как породившее его магнитное поле первого сельсина.
Теперь можно двумя способами использовать второй сельсин. Мы можем подать в его ротор такое же напряжение, какое подается в ротор первого (обычно переменное напряжение 90—100 в с частотой 50 гц). Тогда в результате взаимодействия магнитного поля ротора второго сельсина с магнитными полями обмоток его статора ротор займет точно такое же положение, что и ротор первого сельсина.
Н. — Я понял, как работает система, но я не вижу разницы между управляющим и управляемым сельсинами.
Л. — Ты прав, что не видишь разницы — ее действительно нет. Передача может происходить в обоих направлениях. Все происходит так, как если бы для передачи движения с одного сельсина на другой использовали длинный гибкий вал. Если ты силой помешаешь вращению ротора второго сельсина, то почувствуешь соответствующее сопротивление на роторе первого.
Это система передачи положения, а не система автоматического регулирования. Обычно ею пользуются для перемещения вторым сельсином стрелки по шкале. Система очень удобна в тех случаях, когда при передаче угла необходимо обеспечить вращение по всему кругу без мертвого угла; ею удачно заменяют рассмотренные нами ранее системы на потенциометрах. Но картина будет совершенно другая, если я не подам тока в ротор второго сельсина и если я поверну его рукой. Как ты думаешь, что в этом случае произойдет?
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Радиолюбителям-изобретателям автор рассказывает, как можно порой неожиданно использовать звуковой генератор при конструировании многих приборов и приспособлений, применяемых в быту, народном хозяйстве, спорте, медицине, при изучении проблем инженерной психологии. Отдельные приборы могут быть использованы в медико-биологических группах для научно-исследовательской работы.По изложению материала книга доступна начинающим радиолюбителям, может послужить пособием для радиотехнических кружков, но конструкции, которые в ней описаны, заинтересуют и многих подготовленных радиолюбителей.
Книга в занимательной форме рассказывает о проблемах цифровой связи. Открывает удивительный мир двух цифр: 0 и 1, с помощью которых можно «спрятать» в электронный «шкафчик» многотомные издания А. Дюма, разгадать тайну знаменитой Джоконды, «законсервировать» или передать на расстояние речь, музыку, изображение. Знакомит с линиями передачи цифровой информации, цифровыми многоканальными системами передачи.Для любознательных читателей, для молодежи, выбирающей профессию, и всех, кто интересуется современными телекоммуникациями, будет полезна студентам высших и средних учебных, заведений.
В книге рассказывается о том, как устроен и работает современный радиоприемник. Рассказ ведется в форме непринужденных бесед между опытным и начинающим радиолюбителями. Беседы иллюстрируются занимательными рисунками.Рассчитана книга на широкий круг читателей, желающих ознакомиться с радиотехникой.
В форме популярных бесед книга знакомит юного читателя с историей и развитием радио, с элементарной электро- и радиотехникой, электроникой. Она содержит более пятидесяти описаний различных по сложности любительских радиовещательных приемников и усилителей звуковой частоты с питанием от источников постоянного и переменного тока, измерительных пробников и приборов, автоматически действующих электронных устройств, простых электро- цветомузыкальных инструментов, радиотехнических игрушек и аттракционов, аппаратуры для телеуправления моделями, для радиоспорта.