Электроника?.. Нет ничего проще! - [111]

Шрифт
Интервал

Н. — Разве такое положение возможно? Ведь аноды соединены между собой колебательным контуром.

Л. — В контуре вполне возможно возникновение небольших колебаний, которые создадут на мгновение разность потенциалов между его выводами. Как поведут себя в этом случае выходящие с катода электроны?

Н. — О! Здесь нет никакой проблемы. Большинство электронов пойдет к тому из анодов, который имеет более высокий потенциал.

Л. — В этом-то напряжении электронов пойдет меньше, чем в другом. Не забывай о наличии магнитного поля — оно стремится закрутить траекторию движения электронов вокруг катода. Поэтому из-за отклонения траектории большое число электронов, двигавшихся в сторону более положительного анода, попадет на менее положительный анод.

Н. — Эти электроны ведут себя крайне нелепо!

Л. — Ничего подобного! Эти электроны стремятся усилить первоначальный разбаланс. Они повышают разность потенциалов между двумя анодами до тех пор, пока колебательный контур не начнет изменять эту разность в другую сторону. Следовательно, колебания будут поддерживаться действием электронов и магнитным полем.

Н. — Очень ловко! Но по сути дела твой магнетрон не что иное, как. диод с двумя анодами.


Многоанодный магнетрон

Л. — Совершенно верно. Но обычно магнетроны делают не с двумя, а с большим количеством анодов, например с восемью или десятью. Их можно расположить по схеме, приведенной на рис. 156.



Рис. 156.Многорезонаторный магнетрон с восемью анодами, соединенными колебательными контурами.


Колебания создаются точно так, как показано на рис. 155; разница заключается лишь в том, что в этом случае делают восемь одновременно работающих связанных колебательных контуров. В какой-то определенный момент четные аноды положительны относительно нечетных, а в следующий полупериод — наоборот.

Н. — Я понимаю принцип работы, но, на мой взгляд, сделать такую восьмианодную систему с восемью колебательными контурами дьявольски сложно!

Л. — Намного проще, чем ты думаешь, Незнайкин. Все эти колебательные контуры и аноды сделаны из одного куска меди, которому придана форма, показанная на рис. 157. Весь этот медный блок соединяется с положительным полюсом источника высокого напряжения. Как ты видишь, чтобы пройти от одного анода к другому, ток должен обогнуть полости, что дает нам эквивалент одновитковой катушки.




Рис. 157.Реальная конструкция восьмикамерного магнетрона; колебательными контурами являются объемные резонаторы, полученные фрезерованием анодного блока. В одном из объемных резонаторов находится петля — виток связи, предназначенный для вывода энергии.


Н. — С катушкой все ясно, но я совсем не вижу конденсатора.

Л. — Но в этом повинны твои глаза; между двумя поверхностями щели, соединяющей околокатодное пространство с одной из полостей, имеется некоторая емкость.

Н. — Ты прав. Принимая во внимание очень малую индуктивность и очень малую емкость, я полагаю, что система должна создавать колебания очень высокой частоты.

Л. — Такие магнетроны легко позволяют получить колебания с частотой выше 30 000 Мгц, иначе говоря, выше 30 миллиардов периодов в секунду. Такая частота соответствует длине волны меньше одного сантиметра. Но в современных радиолокаторах магнетроны чаще используют для получения колебаний с частотой 3 Ггц (т. е. 3000 Мгц), что соответствует длине волны 10 см или же 10 Ггц (длина волны 3 см). Обычно в радиолокаторах питание от источника довольно высокого напряжения подается на магнетроны на очень короткое время (одна микросекунда или еще меньше), что позволяет получить очень высокую мгновенную мощность.

Н. — А как выводят эту мощность из магнетрона?

Л. — Очень просто. В одну из полостей помещают петлю связи, которая служит вторичной обмоткой трансформатора, к ней подключают коаксиальный кабель, через который и отводят энергию.


Коаксиальный кабель с медной «изоляцией»

Н. — Ты упомянул о коаксиальном кабеле, а у меня как раз заготовлен один вопрос на эту тему. У меня сложилось впечатление, что в радиолокаторах не очень часто применяют этот кабель. Чем это объяснить?

Л. — Дело в том, что в радиолокаторах нужно передавать на высоких частотах большую мощность с минимальными потерями. В коаксиальном кабеле сложность возникает из-за необходимости крепления внутреннего проводника строго в середине внешнего. Использование для этой цели какого-либо изоляционного материала вызывает значительные потери энергии.

Н. — Какой же тогда изоляционный материал лучше всего поставить в коаксиальный кабель?

Л. — В этом случае я рекомендую тебе воспользоваться медью.

Н. — Ты что, смеешься надо мною? Я хотел бы знать, кого из нас двоих здорово стукнули коаксиальным кабелем по голове!



Л. — Я прекрасно понимаю твое удивление. Но не забывай, что здесь нам приходится иметь дело с очень высокими частотами. В коаксиальном кабеле можно сделать для внутреннего проводника медную опору, длина которой равна четверти длины волны колебания, передаваемого по кабелю (см. схематическое изображение на рис. 158).



Рис. 158.Четвертьволновая опора для внутреннего проводника коаксиального кабеля.


Конец этого четвертьволнового стержня замыкается накоротко с внешним проводником, и поэтому отраженная им волна возвращается в исходную точку в фазе с проходящей там прямой волной. Все происходит так, как если бы этот стержень-опора был разрезан в месте своего соединения с внутренним проводником.


Рекомендуем почитать
Животные защищаются

Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2005 № 12 (942)

Ежемесячный научно-популярный и научно-художественный журнал.


Жанна д’Арк. Святая или грешница?

Странный вопрос, скажет читатель; Жанну давно простили и канонизировали, о ней написана масса книг — и благочестивых, и «конспирологических», где предполагают, что она не была сожжена и жила впоследствии под другим именем. Но «феномен Жанны д’Арк» остается непостижимым. Потрясающей силы духовный порыв, увлекший ее на воинский подвиг вопреки всем обычаям ее времени, связан с тем, что, собственно, и называется мистицизмом: это внецерковное общение с незримыми силами, превышающими человеческое разумение.


Лестница жизни

Как возникла жизнь? Откуда взялась ДНК? Почему мы умираем? В последние десятилетия ученые смогли пролить свет на эти и другие вопросы происхождения и организации жизни. Известный английский биохимик реконструирует историю всего живого, описывая лучшие изобретения эволюции, и рассказывает, как каждое из них, начиная с самой жизни и генов и заканчивая сознанием и смертью, преображало природу нашей планеты и даже саму планету.


Юный радиолюбитель [7-изд]

В форме популярных бесед книга знакомит юного читателя с историей и развитием радио, с элементарной электро- и радиотехникой, электроникой. Она содержит более пятидесяти описаний различных по сложности любительских радиовещательных приемников и усилителей звуковой частоты с питанием от источников постоянного и переменного тока, измерительных пробников и приборов, автоматически действующих электронных устройств, простых электро- цветомузыкальных инструментов, радиотехнических игрушек и аттракционов, аппаратуры для телеуправления моделями, для радиоспорта.


...И мир загадочный за занавесом цифр. Цифровая связь

Книга в занимательной форме рассказывает о проблемах цифровой связи. Открывает удивительный мир двух цифр: 0 и 1, с помощью которых можно «спрятать» в электронный «шкафчик» многотомные издания А. Дюма, разгадать тайну знаменитой Джоконды, «законсервировать» или передать на расстояние речь, музыку, изображение. Знакомит с линиями передачи цифровой информации, цифровыми многоканальными системами передачи.Для любознательных читателей, для молодежи, выбирающей профессию, и всех, кто интересуется современными телекоммуникациями, будет полезна студентам высших и средних учебных, заведений.


Твой друг электроника

Радиолюбителям-изобретателям автор рассказывает, как можно порой неожиданно использовать звуковой генератор при конструировании многих приборов и приспособлений, применяемых в быту, народном хозяйстве, спорте, медицине, при изучении проблем инженерной психологии. Отдельные приборы могут быть использованы в медико-биологических группах для научно-исследовательской работы.По изложению материала книга доступна начинающим радиолюбителям, может послужить пособием для радиотехнических кружков, но конструкции, которые в ней описаны, заинтересуют и многих подготовленных радиолюбителей.


Радио?.. Это очень просто!

В книге рассказывается о том, как устроен и работает современный радиоприемник. Рассказ ведется в форме непринужденных бесед между опытным и начинающим радиолюбителями. Беседы иллюстрируются занимательными рисунками.Рассчитана книга на широкий круг читателей, желающих ознакомиться с радиотехникой.