Электричество шаг за шагом - [33]

Шрифт
Интервал

Здесь уместно вспомнить, что электрон и протон — это частицы с самой маленькой порцией электрического заряда. Отрицательный заряд электрона, так же как положительный заряд протона, составляет примерно 0,15∙10>-18 К, то есть 0,15 миллиардной части от одной миллиардной части кулона. Отсюда следует: чтобы получить электрический заряд в один кулон, нужно собрать вместе примерно 6∙10>18 электронов, то есть 6 миллиардов миллиардов (6 квинтиллионов) штук. Эту кучку электронов (Т-8) можно условно представить себе как своего рода эталон — как 1 К отрицательного электрического заряда. Можно представить себе такой же эталон положительного заряда из мысленно собранных вместе 6∙-10>18 протонов.

Заряд в один кулон в виде кучки из 6∙10>18 электронов или протонов для нашего воображения непосильная задача — очень уж много микрочастиц нужно собрать вместе. Но не стоит из-за этого огорчаться — хорошо, хоть можно думать об единице заряда, как о некоторой реальности, смирившись со всеми непостижимостями масштабов микромира. Что поделаешь — в природе встречаются именно такие основные электрические детали, и любое физическое тело, обладающее электрическим зарядом, получило его как сумму электрических свойств миллиардов или триллионов атомных частиц.



ВК-53.Закон Ома — очень важная, очень простая и очень понятная зависимость между электродвижущей силой Е, сопротивлением R и током I в простейшей электрической цепи: чем больше э.д.с. Е — тем больше ток I, чем больше сопротивление R — тем меньше ток. Из основной формулы закона Ома I = Е: R легко получить две расчётные формулы — для вычисления э.д.с. Е и сопротивления R. Для получения первой достаточно обе части основной формулы умножить на R, для второй — результат разделить на I.


Реально заряд в 1 К (один кулон) не удастся получить, сложив вплотную и собрав в маленьком объёме необходимое для этого количество протонов или электронов. Частицы с одноимённым зарядом будут расталкиваться с такой огромной силой, что в одну микроскопическую пылинку их не сожмёшь. Вспомните, только мощнейшие ядерные силы могут преодолеть электрическое расталкивание одноимённых зарядов и объединить в атомном ядре несколько десятков протонов.

Всё сказанное должно стать важной составной частью нашего представления об электрическом королевстве. Здесь во всех машинах и технологиях, в том числе в энергетике больших мощностей, работают чрезвычайно малые и чрезвычайно слабые, по нашим человеческим меркам, работники — в основном свободные электроны. Но количество их всегда настолько велико, действовать они могут настолько согласованно, и управлять этими действиями удаётся настолько точно, что микроскопические электрические невидимки совместно демонстрируют гигантские мощности и чрезвычайно высокое, просто-таки виртуозное мастерство.

После того как мы определили единицу электрического заряда, можно без особых трудностей ввести очень важную характеристику электрических цепей — величину тока, или, иначе, силу тока.

Т-45. Единица силы тока — ампер (А). Сила тока одна из самых естественных и самых понятных характеристик — она говорит о том, насколько интенсивно упорядоченное движение свободных зарядов в каком-либо участке электрической цепи. Слово «интенсивность» часто используют при оценке автомобильного движения. Если, например, мимо вашего дома каждую минуту проносится два-три десятка автомобилей, то считайте, что вы живёте на улице с интенсивным движением, а если два-три десятка автомобилей проезжают по вашей улице за сутки, то интенсивность движения, конечно, невелика. При оценке величины электрического тока вместо характеристики интенсивность принято употреблять характеристику сила — в этом случае она имеет примерно тот же смысл, что и в выражении «сильный дождь».



ВК-54.Если к генератору, например к химическому, ничего не подключено, то избыточные заряды соберутся на его электродах и между «плюсом» и «минусом» окажется своего рода электрический «обрыв». Но если к генератору подключить внешнюю цепь, то вместо «обрыва» появится электрический «пологий спуск» — избыточные заряды автоматически распределятся в цепи и будут своим электрическим полем подталкивать свободные электроны на всём их пути во внешней цепи от «минуса» к «плюсу».



Р-16. ПОЛЕЗНЫЙ ОБМАН — НАПОМИНАНИЕ ОБ УДАРЕ. Многие, возможно, видели, как при ударе большим молотом по куску гранита из него вылетают искры, — это часть энергии удара превращается в тепло и оно накаляет разлетающиеся мельчайшие осколки камня. Примерно так же нагреваются ладони при бурных аплодисментах или пила в результате мелких и частых ударов её зубьев о распиливаемое дерево. И таким же образом электрический ток нагревает металл, по которому он движется, — свободные электроны, включившиеся в этот ток, сталкиваются с неподвижными атомами вещества, в котором он протекает. При этом, конечно, ток пропускают не по меди или алюминию, в которых свободные электроны двигаются легко и почти беспрепятственно. Ток пропускают по металлам, где электроны часто сталкиваются с атомами самого вещества и легко превращают в тепло значительную часть своей энергии. Это, конечно, упрощённая картина, и нужно не забывать об этом упрощении.


Еще от автора Рудольф Анатольевич Сворень
Ваш радиоприемник

Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.


Шаг за шагом. Транзисторы

Книга написана простым языком и ориентирована на средний и старший школьный возраст. В ней автор доступным языком излагает основы работы полупроводниковых приборов. Книга сопровождается множеством иллюстраций, благодаря чему шаг за шагом постигается сложный мир внутри транзисторов.Поскольку книга больше ориентирована на детей, то повествование идет буквально "на пальцах", не используется никаких сложных формул или вычислений — только как полупроводниковые приборы работают и как их использовать.


Шаг за шагом. Усилители и радиоузлы

В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.


Шаг за шагом. От детекторного приемника до супергетеродина

Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.


В просторы космоса, в глубины атома [Пособие для учащихся]

В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.