Электричество шаг за шагом - [23]
Из-за всех этих сложностей авторы учебных и популярных книг стараются не привлекать непростые квантовые представления и всё, что возможно, обычно поясняют с простых и наглядных классических позиций. По той же причине в наших рассказах об электричестве использованы добрые старые очень упрощённые модели, ими наполнено большинство учебников, к знакомству с которыми мы готовимся. И всё же, пользуясь этими моделями, нужно хоть изредка вспоминать, что реальный мир сложнее и что квантовая физика уже многое открыла в этой сложности.
Т-33. Электроны и ионы могут находиться в свободном состоянии и перемещаться в межатомном пространстве. Есть хорошая французская поговорка: «Для того чтобы сделать рагу из зайца, нужно как минимум иметь зайца». По аналогии можно сказать: для того чтобы заставить ионы и электроны работать в электрических машинах, нужно как минимум иметь эти ионы и электроны. Причём иметь их не закреплёнными в структуре вещества, а в подвижном, в совершенно свободном состоянии, чтобы можно было эти микроскопические детали перемещать, двигать и тем самым заставить их выполнять какую-то работу.
ВК-37.Электрический заряд (обычно обозначается буквой q, или Q) электрона — мельчайшая порция отрицательного электричества, так же как заряд протона — мельчайшая порция положительного. Распространённая единица электрического заряда — кулон (сокращённо К), он равен суммарному заряду собранных вместе 6 280 000 000 000 000 000 (6,28 миллиарда миллиардов, или иначе 6,28∙10>18) электронов или протонов. Кулон очень распространённая единица, через неё приходят к единицам тока и напряжения.
Повседневный опыт приучил нас, что твёрдые тела и жидкости имеют плотную, непрерывную структуру. А вместе с тем структура у них, если можно так сказать, ажурная, и любое вещество — вода, бумага, мрамор, сталь — больше напоминает редкую волейбольную сетку, чем плотный клубок ниток. Мы, конечно, не можем невооружённым глазом увидеть эту ажурность, сетчатость, но точными физическими исследованиями установлено, что сгустки вещества, в частности атомные ядра и электроны, находятся друг от друга на огромном по атомным масштабам расстоянии.
Так, если предположить, что атомное ядро имеет размеры футбольного мяча, то для соблюдения истинных пропорций нужно представить себе, как вокруг этого мяча на расстояниях в сотни и тысячи метров (!) вращаются электроны размером с горошину. А всё остальное — пустота. Ажурные атомные конструкции — вот первая особенность строения вещества, которую важно знать конструкторам электрических заводов, где будут работать электроны.
А вот вторая…
В твёрдом теле атомы как бы закреплены, связаны друг с другом в прочный каркас. В жидкостях атомы связаны слабее, могут смещаться, именно поэтому жидкость «мягкая», она легко изгибается, течёт, принимает форму сосуда. Ну а в газах у атомов вообще полная свобода — лети куда хочешь. И во всех случаях — в твёрдом теле, в жидкостях и в газах — атомы совершают какие-то небольшие движения, колеблются, пошатываются (Т-8), причём тем сильнее, чем выше температура вещества. Эти колебания и пошатывания прекращаются только при абсолютном нуле, при температуре 0 градусов по шкале Кельвина (ноль градусов Кельвина записывается так — 0 К), а это минус 273,16 градуса по шкале Цельсия. Получить такую низкую температуру пока никому не удалось, хотя подошли к ней очень близко — остались тысячные доли градуса.
ВК-38. Чтобы количественно оценить электрический ток (обычно обозначается буквой I), существует единица измерения ампер (А) — это такой ток, при котором через поперечное сечение проводника за одну секунду проходит электрический заряд 1 кулон, например 6,28∙10>18 электронов. Если за секунду проходит заряд в 2 кулона, то ток, естественно, в два раза интенсивней, то есть составляет 2 ампера, а если 1 кулон проходит через поперечное сечение проводника за 2 секунды, то ток составляет 0,5 ампера.
Р-10. ПЯТЁРКА ГЛАВНЫХ СИЛ ПРИРОДЫ. Тот, кто интересовался научными дискуссиями, проходившими сорок-пятьдесят лет назад, наверняка помнит одну из их тем — «Основные силы природы». Она называла пять основных сил, полученных нашим миром при его рождении, — это силы гравитационные (1), электрические (2), магнитные (3), а также действующие только в микромире ядерные сильные силы (4) и ядерные слабые силы (5). Главными эти силы назвали потому, что всё происходящее в мире сводится к действию одной или нескольких сил из этой пятёрки.
Уже давно было известно, что электрические и магнитные силы есть нечто единое по имени электромагнетизм, что в эту группу уже нужно включить слабые ядерные силы, назвав их электрослабыми. На этом рисунке Р-10 мы сознательно повторили вольность своих коллег, предложив читателям всю пятёрку природных сил с учётом их способности действовать самостоятельно и без учёта родственных связей. Мы ещё поговорим о союзе электричества и магнетизма, на котором основана чуть ли не вся электротехника. Вспомним мы и о сильных ядерных силах, их породил так называемый барионный заряд протона и нейтрона, который начинает действовать на очень малых расстояниях. Но зато сильные силы во много раз сильнее электрических сил и поэтому успешно противодействуют развалу атомных ядер (4) из-за расталкивания протонов с одинаковым электрическим зарядом (см. Р-2). И без ядерных слабых сил не мог бы существовать наш мир, они участвуют в превращении атомов водорода в более сложные атомы гелия (5), а этот процесс кормит энергией большинство звёзд, в том числе и наше Солнце.
Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.
Книга написана простым языком и ориентирована на средний и старший школьный возраст. В ней автор доступным языком излагает основы работы полупроводниковых приборов. Книга сопровождается множеством иллюстраций, благодаря чему шаг за шагом постигается сложный мир внутри транзисторов.Поскольку книга больше ориентирована на детей, то повествование идет буквально "на пальцах", не используется никаких сложных формул или вычислений — только как полупроводниковые приборы работают и как их использовать.
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.
В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.