Электричество шаг за шагом - [19]
Сами же ядерные частицы — нейтрон и протон — различаются прежде всего тем, что нейтрон в электрическом отношении нейтрален (отсюда и его название), то есть никакими электрическими свойствами он не обладает, его электрический заряд равен нулю. А у протона есть положительный электрический заряд.
Подведём некоторые итоги. Электрон на орбите, протон в ядре; обе частицы от природы обладают электрическими свойствами, у электрона отрицательный электрический заряд, «минус», у протона — положительный, «плюс».
Теперь уже, наверное, понятно, почему именно электрические силы в настоящем атоме делают то, что в нашей модели делала нитка: притягивают к ядру вращающийся электрон, не дают ему улететь из атома под действием центробежных сил. У протонов и у электронов разноимённые электрические заряды, и силы их электрического взаимодействия стараются стянуть, сблизить эти частицы.
Ещё одна интересная особенность: у электрона и у протона заряды хотя и разного сорта (на официальном языке — разного знака, то есть «плюс» и «минус»), но эти заряды равны по величине, по своей, если можно так сказать, действующей силе. Массы у этих частиц разные — вспомните: маленькая канцелярская скрепка (электрон) и двухлитровая банка воды (протон), а вот электрические заряды, электрические свойства абсолютно одинаковые. Это тоже может быть доказано точными опытами: если на некотором расстоянии один от другого расположить два протона и на таком же расстоянии один от другого расположить два электрона, то электрические силы будут расталкивать протоны (одноимённые заряды) точно с такой же силой, с какой расталкиваются электроны (одноимённые заряды).
ВК-31. В химическом генераторе реакции между электродами и электролитом непрерывно поставляют электроны на отрицательный электрод (—) и убирают их с положительного электрода (+). Иными словами, химическая энергия участвующих в реакциях веществ, запасённая в их структуре, непрерывно электризует электроды, поддерживает на них избыточный «плюс» и «минус». За счёт этого во внешней цепи непрерывно идёт ток — упорядоченное движение свободных электронов от «минуса» к «плюсу».
Р-9. ПРОТОНЫ И НЕЙТРОНЫ ИЗ КВАРКОВ. Было время, когда атом (в переводе с греческого — неделимый) считался чем-то в виде цельного микрошарика, но уже около ста лет нет никаких сомнений в том, что атом — сложная система, собранная из протонов, нейтронов и электронов. Сейчас протон и нейтрон, тоже бывшие неделимые «шарики», считают прочным соединением трёх деталей — кварков по имени u и d (от up — вверх и down — вниз). Детали эти, как и само их название «кварки», были придуманы пол века назад теоретиками, а через несколько лет в экспериментах нашли приметы их реального существования. И хотя извлечь кварки и «подержать их в руках» в принципе невозможно, уже удалось обнаружить, что у них есть не только хорошо знакомые нам свойства, такие, например, как масса и электрический заряд, но и ряд совершенно новых для физики, так сказать, чисто кварковых свойств, которым дали любопытные названия: цвет, очарование, прелесть, странность и другие в этом же роде. Кроме того, кварки требуют внести поправки в нашу оценку минимальной порции электрического заряда — он может составлять 2/3 и 1/3 от заряда электрона или протона, который в электротехнике всегда считали минимальной порцией электричества.
Кроме нормальных кварков в теории, а значит, и в природе есть ещё и антикварки — частицы с противоположным набором некоторых свойств. Античастицы для физики явление не новое, давно известны антиэлектрон (позитрон) — электрон с положительным электрическим зарядом — и антипротон с отрицательным. Античастица живёт ничтожные доли секунды, она тотчас же соединяется с нормальной частицей, и они вместе погибают, точнее, превращаются в порцию энергии. Не будем пока говорить о других звёздных системах, но в нашей практически нет антивещества. О нём, так же как и о кварках, полезно хоть что-то знать, но чаще всего не нужно учитывать эту безумную физику, размышляя об устройстве электрических машин и приборов. Поэтому, не забывая о поправках, которые может принести нам собранный из кварков атом, мы пока будем считать протон единой частицей с минимальной порцией положительного электрического заряда, равной (по силе!!!) отрицательному заряду электрона.
Вот, оказывается, как великолепно сконструирован и изготовлен наш мир. Мало того, что получились совершенно одинаковыми все электроны во Вселенной, всё их неисчислимое множество. И все протоны получились совершенно одинаковыми. Ко всему ещё обе эти абсолютно разные частицы (бумажная скрепка и двухлитровая банка воды) имеют одинаковый по величине электрический заряд, при этом заряды у них разного сорта, разного знака. Именно такие частицы, оказывается, необходимы для образования устойчивых атомов.
Сравнительно недавно, лет 40–50 назад, начала активно развиваться и получать экспериментальное подтверждение физическая теория, согласно которой такие частицы, как протон и нейтрон (к электрону это не относится), состоят из ещё более мелких деталей — кварков (Р-9). У кварков электрический заряд меньше, чем у протона и электрона, и может составлять 1/3 или 2/3 от той порции электричества, которую имеет протон. Причём заряд кварков может быть как положительным, так и отрицательным. Однако та же теория предсказывает, что сами кварки выделить из протонов или других частиц и получить в «чистом виде» невозможно, а может быть, даже принципиально невозможно. Придравшись к этому, мы будем считать, так же как считалось до появления кварковых моделей, что положительный заряд протона и отрицательный заряд электрона — это самые малые порции электричества, которые можно обнаружить в природе.
Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.
Книга написана простым языком и ориентирована на средний и старший школьный возраст. В ней автор доступным языком излагает основы работы полупроводниковых приборов. Книга сопровождается множеством иллюстраций, благодаря чему шаг за шагом постигается сложный мир внутри транзисторов.Поскольку книга больше ориентирована на детей, то повествование идет буквально "на пальцах", не используется никаких сложных формул или вычислений — только как полупроводниковые приборы работают и как их использовать.
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.
В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.