Электричество шаг за шагом - [15]

Шрифт
Интервал

Одинаковость, однотипность массы проверена с колоссальной, просто-таки фантастической точностью — до миллионных долей миллионной доли процента. Но факт существования только одного сорта массы настолько важен, что физики планируют ещё более точную его проверку: а вдруг окажется, что есть такой вид массы, который отталкивается от нашей, привычной? Вот тут уж мы полетаем над землёй и в космосе — без моторов, без топлива, совершенно бесплатно, за счёт одной только антигравитации.



ВК-23.Натирая стекло тряпкой, мы из многих атомов на его поверхности, грубо говоря, выдираем электроны, в стекле появляются положительные ионы, то есть положительный заряд. Электроны из стекла переходят на тряпку, и она приобретает отрицательный заряд. А при натирании пластмассы в атомы на её поверхность переходят электроны с тряпки, которой осуществляли натирание, — в пластмассе появляются отрицательные ионы и суммарный «минус», а у тряпки — «плюс».


В отличие от массы электричество бывает двух разных сортов, и в этом может убедиться каждый, проделав опыты с натиранием стеклянной и пластмассовой палочек. На обеих палочках при их натирании появляется электрический заряд — обе они притягивают мелкие клочки бумаги. Но на стеклянной палочке и на пластмассовой появляются заряды разного сорта, и это будет незамедлительно доказано с помощью очень простого эксперимента.

Если появившиеся при натирании заряды передавать с палочек на два лёгких пенопластовых шарика, подвешенных на нитках, то обнаружится, что в разных случаях эти наэлектризованные шарики ведут себя по-разному. Шарики, получившие электрический заряд разных сортов (один шарик от стеклянной палочки, другой — от пластмассовой), взаимно притягиваются. Шарики, получившие электрический заряд одного и того же сорта (оба от стеклянной палочки или оба от пластмассовой), отталкиваются. Если бы электричество было только одного сорта, то взаимодействие зарядов всегда было бы одинаковым — независимо от того, какими палочками вы прикасались бы к шарикам, они всегда либо только притягивались бы, либо только отталкивались. Таким образом, из наших опытов как раз и следует, что электричество бывает двух сортов: электрические заряды одного и того же сорта, или, иными словами, одноимённые электрические заряды, как бы не любят друг друга (Т-8) и взаимно отталкиваются, разноимённые — взаимно притягиваются.



ВК-24.Мы подробно обсудили натирание пластмассы и стекла, но один вопрос остался без ответа. Почему к наэлектризованным предметам притягиваются мелкие клочки бумаги, у которых вроде бы нет никакого своего заряда? Когда-то были придуманы фантастические молекулярные цепочки, которые могли бы тянуть бумагу, но эта идея блестяще провалилась, когда опыт повторили в вакууме. Там молекулярных цепочек вообще не могло быть. К счастью, нашлось другое объяснение — поляризация (ВК-25).


Два разных сорта электричества нужно было как-то назвать, скажем, электричество сорта А и электричество сорта Б. Или электричество «Жёлтое» и «Зелёное». Или, наконец, «Стеклянное» и «Пластмассовое». Однако тому, кто давал имена этим двум разным сортам, понравились другие слова, и он назвал два разных сорта электричества «Положительным» (сокращённое обозначение +, «плюс») и «Отрицательным» (-, «минус»). В данном случае привычный для нас смысл этих слов не имеет никакого значения, и ни в коем случае не нужно думать, что положительное электричество чем-то лучше отрицательного, как, скажем, положительный литературный герой или положительный пример.

Электрический заряд, который назвали положительным, появляется у натёртого стекла, отрицательный — у натёртой пластмассы. Попробуем провести такой мысленный эксперимент: будем ломать, распиливать, крошить наэлектризованные стекло и пластмассу, чтобы найти в них самые маленькие порции электрического заряда.

Начнём со стекла.

Т-23. В наэлектризованных палочках у некоторых молекул чувствуется электрический заряд. Мысленный эксперимент, кроме всего прочего, хорош тем, что любая трудная работа здесь идёт легко и быстро. Вот и у нас уже появились сначала маленькие кусочки наэлектризованного стекла, затем очень маленькие и наконец самые маленькие его частички с хорошо известным названием — «молекула». Оно происходит от латинского слова «моле» — «масса», так что слово «молекула» означает «маленькая масса, массочка».

Можно, конечно, и появившиеся у нас молекулы стекла разделить на составные части, но то, что при этом получится, уже не будет стеклом. Здесь, пожалуй, уместно такое сравнение. Представьте себе, что вам нужно разделить на районы город. Самый маленький район, который может получиться, — это один дом, молекула большого города. Можно, конечно, и дом разобрать по частям, но вряд ли оконную раму или водопроводный кран можно будет назвать районом города.

Измельчая в мысленном эксперименте предварительно натёртые, то есть наэлектризованные, стекло и пластмассу и в итоге получив их молекулы, мы обнаружим, что некоторые молекулы тоже наэлектризованы, то есть тоже обладают электрическими свойствами, а другие — не обладают. Остаётся предположить, что электрический заряд молекулы находится в какой-то ещё более мелкой частице, которая или входит или не входит в молекулу. И если входит, то делает эту молекулу наэлектризованной. А если не входит, то молекула остаётся электрически нейтральной.


Еще от автора Рудольф Анатольевич Сворень
Ваш радиоприемник

Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.


Шаг за шагом. Транзисторы

Книга написана простым языком и ориентирована на средний и старший школьный возраст. В ней автор доступным языком излагает основы работы полупроводниковых приборов. Книга сопровождается множеством иллюстраций, благодаря чему шаг за шагом постигается сложный мир внутри транзисторов.Поскольку книга больше ориентирована на детей, то повествование идет буквально "на пальцах", не используется никаких сложных формул или вычислений — только как полупроводниковые приборы работают и как их использовать.


Шаг за шагом. Усилители и радиоузлы

В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.


Шаг за шагом. От детекторного приемника до супергетеродина

Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.


В просторы космоса, в глубины атома [Пособие для учащихся]

В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.