Электричество шаг за шагом - [11]
Масса Земли огромна — примерно 6 триллионов триллионов килограммов, шестерка и за ней 24 нуля. Поэтому там, где в гравитационном взаимодействии участвует Земля, появляется довольно большая сила, её вполне хватает на то, чтобы энергично перемещать к земной поверхности выпущенный из руки камень, капли дождя или даже оторвавшийся от дерева очень лёгкий засохший жёлтый лист. А масса Луны в 80 раз меньше, и она притягивает к себе значительно слабее Земли. Поэтому астронавты так легко ходили (можно даже сказать прыгали) по Луне, и для того чтобы оторваться от неё, космическому аппарату хватило одного сравнительно небольшого двигателя.
Кстати, мы допускаем неточность, когда утверждаем, что камушек притягивается к Земле. Притяжение у них взаимное, но Земля тяжёлая, ей трудно сдвинуться с места, а камушек лёгкий, гравитационные силы перемещают его без особого труда.
Но, как говорится, к чёрту подробности — мы заговорили о падающем камне для того, чтобы сделать выводы чрезвычайной важности. Опыт демонстрирует нам явление, которое называют гравитационным притяжением или гравитационным взаимодействием, а коротко — просто гравитацией. Откуда она появилась? Какова природа гравитации? Почему разные предметы притягивают друг друга?
Можно написать цепочку химических формул и объяснить, почему горят дрова. Можно нарисовать несколько схем и объяснить, почему взлетает многотонный самолёт. Но сегодня подобным образом нельзя, невозможно достаточно просто объяснить, почему работает гравитация. Мы своими глазами видим, что камень падает на Землю, видим, что гравитационное притяжение есть. И объясняется оно очень просто и понятно: так устроен наш мир.
ВК-17.Все вещества состоят из атомов, и самый простой из них — атом водорода. В его ядре один протон с положительным электрическим зарядом (+), а вокруг ядра вращается электрон — частица с отрицательным зарядом (—). Электрон под действием центробежных сил «бежит от центра», но убежать не может из-за электрического притяжения к ядру. Так электрические силы обеспечивают устойчивость атомов, вплоть до самых сложных, в ядре которых больше сотни протонов, а на орбитах столько же электронов.
Т-17. Электричество — одна из важнейших важностей нашего мира, одна из действующих в нём главных сил. Все живые организмы знают, что такое гравитация, прекрасно чувствуют её — чувствуют собственный вес или вес предмета, который нужно поднять. А человек не только чувствует гравитационные силы, но уже давно сумел приручить гравитацию, заставил её, например, бесплатно перевозить грузы вниз по реке и вращать жернова водяной мельницы. Коротко говоря, мы с вами полностью свыклись с гравитацией, считаем её совершенно естественным и абсолютно понятным явлением.
ВК-18.Ночная гроза — хороший повод для размышлений о нашей истории. Такие же молнии полыхали миллиарды лет назад (история учит, какой огромный срок тысяча лет, а тут тысяча тысяч — миллион и тысяча миллионов — миллиард), когда из бессчётных молекул в океане сложилась химическая цепочка их размножения. Через 3 миллиарда лет по джунглям уже бродили стада динозавров. А ещё через 60 миллионов лет заработал первый в мире радиоприёмник, названный грозоотметчиком.
Р-4. ТРИ САМЫЕ ПОПУЛЯРНЫЕ МИКРОЧАСТИЦЫ. Все известные нашим химикам миллионы веществ в итоге сделаны из трёх типов микрочастиц: протонов, нейтронов и электронов. Первые две частицы — протон и нейтрон — своего рода тяжеловесы микромира. Каждая из них в триллион триллионов раз легче песчинки, но в то же время почти в две тысячи раз тяжелее электрона. При этом тяжёлый протон и лёгкий электрон в дополнение к массе имеют ещё и электрический заряд, по своей силе одинаковый, но по знаку разный — у протона «плюс» (электричество этого типа появляется при натирании стекла), у электрона «минус» (а он появляется при натирании пластмассы). Нейтрон по своей массе почти такой же, как и протон, но никакого электрического заряда вообще не имеет — об этом говорит само название частицы, которое происходит от латинского слова «нейтрум» — «ни то ни другое».
Около двух с половиной тысяч лет назад древнегреческий философ и исследователь природы Фалес Милетский сообщил своим коллегам, что у гравитации есть соперник, ранее ловко скрывавшийся от людей. Обнаружилось, что если натереть шерстью янтарную палочку (янтарь — окаменевшая прозрачная смола древних деревьев), то палочка притягивает к себе лёгкие предметы, скажем, клочки ткани. Под действием своего веса, то есть под действием гравитационного притяжения к Земле, эти клочки ткани должны были бы падать, двигаться вниз. А они, преодолевая силы гравитации, упрямо поднимаются вверх.
О чём это говорит? Только об одном: кроме гравитационных сил, кроме сил притяжения, которые стремятся сблизить две массы, в мире существуют ещё какие-то силы. И в опыте с натёртой янтарной палочкой они оказались сильнее гравитации. Какова природа этих неизвестных ранее сил? Почему они появляются после натирания янтаря?
Ответить на эти вопросы первые исследователи не могли, они лишь подробно описали, зафиксировали сам факт непонятного притяжения. А название «электричество» новому явлению, судя по всему, было дано лишь через две тысячи лет — оно впервые появилось в трудах Вильяма Джильберта, придворного врача английской королевы. Он, как мы сейчас сказали бы, в свободное от работы время занимался исследованием магнитов, а затем стал повторять опыты греков с электричеством. На русский язык это слово можно было бы перевести так: «янтаричество». Потому что «электричество» происходит от греческого слова «электрон», что означает «янтарь», и электричеством новое явление было названо именно потому, что оно было обнаружено в опытах с янтарной палочкой.
Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.
Книга написана простым языком и ориентирована на средний и старший школьный возраст. В ней автор доступным языком излагает основы работы полупроводниковых приборов. Книга сопровождается множеством иллюстраций, благодаря чему шаг за шагом постигается сложный мир внутри транзисторов.Поскольку книга больше ориентирована на детей, то повествование идет буквально "на пальцах", не используется никаких сложных формул или вычислений — только как полупроводниковые приборы работают и как их использовать.
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.
В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.