Эксперимент, теория, практика - [5]

Шрифт
Интервал

Машина имела такие размеры, что ее мощность в непрерывном режиме составляла 2000 квт, а при коротком замыкании при испытаниях она давала 220 000 квт. При коротком замыкании на катушку с таким же импедансом, что и у машины, только половина мощности может быть использована; половина ее теряется в машине, а другая половина идет в катушку. Таким образом и были получены требуемые 50 000 квт.

Обычно ток в такой катушке никогда не оставался постоянным, но при определенной конструкции аппаратуры можно было получить волну тока с плоской вершиной, которая дает постоянное магнитное поле на несколько тысячных секунды.

Наибольшая трудность, с которой мы столкнулись, заключалась в том, что катушки стремились разорваться из-за электродинамических сил, старающихся увеличить их диаметр. Мы разработали метод укрепления катушек стальными бандажами и сконструировали катушку такой формы, чтобы электродинамические силы вместе с силами реакции со стороны бандажа сводились к однородному (гидростатическому) давлению на медь. (Катушка для создания импульсных магнитных полей изображена на рисунке слева). Нагрузка внешнего бандажа теперешней катушки достигает 140 тонн.

Другой проблемой явилась разработка специального выключателя для прерывания тока синхронно с волной тока. Так как продолжительность тока составляла лишь 0,01 сек, время. отведенное на переключение, составляло лишь несколько десятитысячных секунды, в течение которых контактная медная пластина выключателя должна была отойти на несколько миллиметров от его щеток. Ускорение, требуемое для передвижения медной пластины весом в 1 кг на такое расстояние, примерно в 1 000 раз больше ускорения свободного падения, а требуемая сила превышает тонну. Для этой цели использовался чрезвычайно прочный и тщательно сконструированный кулачковый вал.

Управление было организовано таким образом, что с помощью различных приспособлений после нажатия одной единственной кнопки эксперимент проводился автоматически, а осциллограммы показывали значения тока в катушках и тем самым позволяли измерить магнитное поле.

Затем нам пришлось преодолеть трудность, вызванную ударом при внезапной остановке генератора. При замыкании угловая скорость якоря, который весит 2,5 тонны, уменьшается на 10% за 0,01 сек и возникает большой вращающий момент, который стремится повернуть всю машину на фундаменте. Чтобы избежать влияния этого удара на наши измерения, катушка помещалась в 20 м от генератора так, чтобы измерения заканчивались прежде, чем сотрясение достигало катушки.

Короткое время эксперимента привело к определенным трудностям при наблюдении и измерении, но в целом потеря во времени компенсировалась выигрышем в величине явления, наблюдаемого в очень сильных полях; оно также дало то большое преимущество, что практически исключило влияние изменения температуры на различные явления, так как в течение 0,01 сек температура оставалась более или менее постоянной.

К настоящему времени мы изучили влияние сильных магнитных полей на различные явления, например, при исследовании эффекта Зеемана мы обнаружили, что расщепление линий оказывается столь велико, что можно использовать обычный призменный спектрограф, имеющий большую светосилу, а время экспозиции можно уменьшить до 0,01 сек без существенного уменьшения точности результатов.

Оказалось, что большой интерес представляет изучение изменения сопротивления различных металлов в сильных магнитных полях; в некоторых случаях возрастание сопротивления составляло от 20 до 30 процентов, в то время как в обычных полях возрастание не превышало долей процента. Более того, мы обнаружили, что в сильных полях наблюдается линейный закон возрастания сопротивления с возрастанием поля, в то время как в обычных полях возрастание сопротивления пропорционально квадрату поля. Мы измерили также магнитную восприимчивость различных металлов в сильных полях. Для этой цели были разработаны и сконструированы специальные весы с собственной частотой около 2000—3000 колебаний в секунду. Так как в наших опытах магнитные силы были примерно в 100 раз больше, чем обычно, то весы были достаточно чувствительны, чтобы измерять восприимчивость большинства веществ.

Другим направлением исследований явилось изучение магнитострикции. В обычных полях это явление известно лишь для ферромагнитных веществ, но в сильных полях мы обнаружили, что оно достаточно заметно в различных других веществах, таких как висмут, олово и графит, которые имеют кристаллическую структуру низкой симметрии. Кристаллы висмута в сильных магнитных полях растягиваются в направлении тригональной оси и сжимаются в направлениях, перпендикулярных к ней.

Видно, что при исследовании различных явлений в сильных магнитных полях, существующих очень короткое время, открываются возможности решения широкого круга научных проблем, но для этого требуются специальная техника и аппаратура.

ПРОБЛЕМЫ ЖИДКОГО ГЕЛИЯ

Доклад на Общем собрании Академии наук СССР 28 декабря 1940 г.

Опубликован в журнале «Советская наука» № 1, 33 (1941).


Я чувствую некоторое затруднение, приступая к изложению моих работ в области жидкого гелия. Большинство слушателей привыкло, конечно, к аналитическому мышлению, необходимому во всякой области научной работы, но я боюсь, что сами проблемы физики для многих из вас далеки.


Еще от автора Пётр Леонидович Капица
Письма к матери. 1921 — 1926

Опубликовано в журнале Новый Мир за 1986 г. в 5 и 6 номере. Публикация и примечания П. Е. Рубинина.


Письма о науке, 1930–1980

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Деловые письма. Великий русский физик о насущном

Пётр Леонидович Капица – советский физик, инженер и инноватор. Лауреат Нобелевской премии (1978). Основатель Института физических проблем (ИФП), директором которого оставался вплоть до последних дней жизни. Один из основателей Московского физико-технического института. Письма Петра Леонидовича Капицы – это письма-разговоры, письма-беседы. Даже самые порой деловые, как ни странно. Когда человек, с которым ему нужно было поговорить, был в далеких краях или недоступен по другим причинам, он садился за стол и писал письмо.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.