Эфир. Русская теория - [51]
В природных условиях азот представлен в молекулярном виде; его молекула состоит из двух атомов; она — очень прочная и распадается лишь при нагреве выше 3000 градусов Цельсия. Азот сжижается при температуре ниже минус 196 градусов, а затвердевает ниже минус 210 градусов. В твердом состоянии он образует кубические и гексагональные модификации.
Азот химически малоактивен: в нормальных условиях он взаимодействует лишь с литием, образуя кристаллы. В то же время известны самые различные соединения азота. С водородом он образует аммиак, молекула которого состоит из одного атома азота и трех атомов водорода. Аммиак — тоже газ и тоже бесцветный; он сжижается при температуре ниже минус 34 градусов, а затвердевает ниже минус 78 градусов; получают его синтезом из простых веществ при температуре 400 … 500 градусов, под давлением 5 … 1000 атмосфер и в присутствии катализатора (обычно железа). Аммиак выделяется также при коксовании каменного угля. Современная химия представляет молекулу аммиака в виде трехгранной пирамиды с атомами в ее вершинах; атомы водорода в ней разнесены под углом 107 градусов.
Известны еще несколько соединений азота с водородом, и наиболее распространенное из них — гидразин (или диамид) — бесцветная жидкость, затвердевающая при температуре ниже двух градусов и закипающая при 113,5 градусах Цельсия. Молекула гидразина содержит два атома азота и четыре атома водорода. Гидразин менее устойчив, чем аммиак, и на воздухе горит с большим выделением тепла.
Из других соединений азота упомянем азотную кислоту, молекула которой состоит из одного атома азота, одного атома водорода и трех атомов кислорода; это — бесцветная жидкость, кипящая при 84,1 градусе, а при минус 41,6 градуса затвердевающая в прозрачную кристаллическую массу. Водный раствор азотной кислоты разрушает животные и растительные ткани, соединяется почти со всеми металлами и неметаллами.
Отметим еще так называемые нитриды — соединения азота с металлами и неметаллами. Одно такое соединение с литием мы уже упоминали: оно легко образуется, но также легко распадается при температуре выше 300 градусов. Другие нитриды металлов возникают труднее, но и отличаются высокой температурой плавления, что говорит о их термической и химической стойкости. Они характеризуются металлическим блеском, электронной проводимостью, а также высокой твердостью. Нитриды могут включать не один металл, а сплавы. Атомарные соотношения нитридов могут быть некратными, то есть на один атом металла может приходиться менее одного атома азота. Нитриды неметаллов — соединения с бором, с алюминием, с кремнием — известны как твердые полимерные вещества с температурой плавления выше 2000 градусов; они являются либо диэлектриков, либо полупроводниками.
Топология атома азота — оригинальная; об этом говорит его петлевая валентность: он присоединяет к себе нечетное количество атомов водорода, а именно три. Номинальная длина шнура исходного тора атома составляет 25 700 эфирных шариков; это относительно длинный шнур, и поэтому деформация тора идет не по пути складывания его вдвое, а —втрое: сначала окружность тора прогибается с трех сторон, затем образовавшиеся три выступа вытягиваются в лучи (лепестки), и на их концах возникают петли; так формируется трехлепестковый атом азота. Если проследить за топологией одиночного атома дальше, то можно отметить, что лепестки изогнутся в одну сторону и сойдутся вместе, уткнувшись вершинами петель друг в друга; атом приобретет грейферную форму.
Но скорее всего, до этой грейферной формы дело не дойдет: трехлепестковые атомы при случайных столкновениях будут образовывать двухатомные молекулы. В молекуле азота три петли одного атома прилипают к таким же трем петлям другого; слипаются также их лучи, так как они представляют собой желоба. Оценивая силу сцепления атомов в молекуле азота, можно сказать, что она очень большая; и для того, чтобы разорвать молекулу, нужно приложить огромное усилие.
Молекула могла бы быть вообще нерасторжимой, если бы не два обстоятельства. Первое: размеры атомов в молекуле — не одинаковые, и поэтому их взаимное прилегание — далеко не идеальное; если и встречаются идеальные пары, то они — большая редкость, и у них судьба — жить на пару почти вечно. Второе: спаренные лепестки молекулы испытывают взаимное влечение, и два из них попытаются максимально сблизиться между собой, но им будет противостоять упругость шнуров; борьба этих сил породит неустойчивость в виде порхания спаренных лепестков; колебания отдельных лепестков определяются их индивидуальными характеристиками, и поэтому лепестки в паре будут колебаться невпопад — это еще больше ослабит молекулу.
Порхания спаренных лепестков порождают вокруг молекулы стоячее тепловое поле, и это поле делает молекулу пушистой. Колеблются не только сблизившиеся лепестки, но и оставшийся одиночный, хотя в меньшей степени; и он будет дополнительно раскачивать тепловое поле. Отсюда, азот — газ.
Петлевые соединения атомов азота с атомами других химических элементов хорошо иллюстрируются на примере аммиака: атомы водорода прилипают в нем к присасывающим сторонам петель атома азота, «грейфер» при этом распускается и приобретает вид трехгранной пирамиды, а точнее сказать — три лепестка молекулы с прилипшими на концах водородными колечками расходятся так, что образуют между собой углы порядка 100 градусов. Говорить о том, что эти углы равны точно ста семи градусам, было бы не совсем правильно: учитывая то, что отогнутые лепестки молекулы аммиака не могут в нормальных условиях не колебаться, углы эти имеют переменные значения. Указанные колебания, очевидно, усиливают тепловое поле молекулы, создаваемое в основном атомами водорода; поэтому аммиак — тоже газ. Подчеркнем, что во всех петлевых соединениях азот всегда трехвалентен.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.