E=mc2. Биография самого знаменитого уравнения мира - [16]

Шрифт
Интервал

Когда Эйнштейн прогуливал занятия, отправляясь вместо школы в кофейню, он нередко прихватывал с собой работы Максвелла. Так начинались его исследования, посвященные открытому Максвеллом удивительному поведению световых волн. Если свет, размышлял Эйнштейн, представляет собой такую же волну, как и все прочие, то, наверное, можно, устремившись следом за ним, его нагнать.

Проиллюстрировать эту проблему можно примером из сёрфинга. Когда вы только оказываетесь в воде и стараетесь, чтобы никто на берегу не заметил, до чего вы перепуганы, волны просто прокатываются мимо вас. Однако, стоит вам заставить себя встать на доску, и вы начинаете скользить с ней к берегу, а несущая вас волна представляется вам неподвижно стоящей под вами и вокруг вас. Если же вы достаточно храбры — или безрассудны — для того, чтобы проделать подобный фокус в огромных приливных волнах Гавайев, вся свертывающаяся в трубу волна кажется вам просто покоящейся за вашей спиной, над головой и повсюду вокруг вас.

Полное понимание проблемы пришло к Эйнштейну лишь в 1905 году. Световые волны отличаются от всех прочих. Водяная волна, которую оседлывает серфер, может казаться ему неподвижной, поскольку все ее составляющие занимают относительно друг друга устойчивое положение. Именно поэтому вы можете, стоя на доске, оглянуться и увидеть нависшую над вами пелену воды. А вот свет ведет себя иначе. Световая волна поддерживает себя в состоянии движения только благодаря тому, что одна ее составляющая, двигаясь вперед, подпитывает своей энергией другую. (Электрическая составляющая, устремляясь вперед, «выдавливает» из себя магнитную, затем магнитная составляющая расходует энергию на создание нового «всплеска» электрической, после чего весь цикл повторяется.) Если вам начинает казаться, что вы развили скорость, достаточную для того, чтобы удерживаться вровень со световым потоком, приглядитесь повнимательнее и вы увидите: та составляющая, которую вы, по вашему мнению, того и гляди нагоните, питает своей энергией другую, все еще уносящуюся от вас.

Попытка нагнать луч света и увидеть его словно бы неподвижно стоящим на месте, равносильна заявлению: «Желаю увидеть размытые дуги, которые описываются мячами жонглера, но чтобы сами мячи при этом не двигались». Так не бывает. Увидеть размытые очертания жонглерских мячей можно лишь тогда, когда они летят по воздуху, и летят быстро.

Эйнштейн пришел к выводу, что свет может существовать, лишь как стремительное движение световой волны. Мысль эта таилась в работах Максвелла более сорока лет, однако никто ее там не обнаружил.

Это новое понимание природы света изменило все, ибо скорость света стала фундаментальным пределом любой скорости, какую можно развить в нашей вселенной — быстрее не способно двигаться ничто.

Тут легко впасть в заблуждение. Если вы уже движетесь со скоростью 299999999 м/с, разве не можете вы добавить в двигатель топлива и развить скорость чуть большую — 300000000, а там и 300000001 м/с — и обогнать свет? Ответ состоит в том, что нет, не можете, и нынешнее состояние земной техники тут решительно ни при чем.

Чтобы понять это, следует помнить, что скорость света есть не просто число, она связана с физическим процессом. Если я скажу вам, что -273 (отрицательное 273) это самое малое из существующих чисел, вы ответите мне, что я заблуждаюсь, и будете совершенно правы: число -274 меньше, — 275 еще меньше и так можно продвигаться до бесконечности. Но предположим, что мы говорим о температуре. Температура вещества это показатель активности движения частиц, из которых оно состоит, и существует некая точка, при достижении которой, частицы эти вибрировать перестают вообще. Это происходит примерно при -273 градусов по Цельсию, и по этой причине -273 и называют «абсолютным нулем», — если речь идет о температуре. Чистые числа могут быть и меньшими, а вот физические показатели не могут: ни монета, ни снегоход, ни гора не способны вибрировать еще слабее, если они уже полностью перестали вибрировать.

То же и со светом. 300000000 м/с, число, измеренное Ремером для, распространявшегося от Юпитера света, представляет собой еще и утверждение о том, на что похож сам свет. То есть о физическом «явлении». Свет всегда будет подобием чехарды — электричество «выскакивает» из магнетизма, затем магнетизм из электричества, и оба они стремительно улетают от всего, что пытается их нагнать. Именно поэтому скорость света и составляет высший предел любых скоростей.

Мысль интересная, может сказать циник, но даже если верхний предел скорости существует, нам-то что с того? Как может влиять его существование на движение тел во вселенной? Ну поставьте на шоссе щит с надписью: «Внимание: скорость, превышающая 300000000 м/с достигнута быть не может!» — машины все равно будут проноситься мимо него так, точно его там нет.

Ой ли? Именно здесь вся аргументация Эйнштейна делает полный круг и возвращается к своему истоку: здесь он показывает, что удивительные свойства света — то обстоятельство, что он по самой природе своей неизменно ускользает от нас и потому его скорость представляет собой верхний предел любой другой, — наконец-то, по-настоящему соотносится с природой энергии и массы. Чтобы понять, как это происходит, давайте рассмотрим пример, являющийся производным от того, которой приводил сам Эйнштейн.


Еще от автора Дэвид Боданис
Электрическая Вселенная. Невероятная, но подлинная история электричества

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.


Самая большая ошибка Эйнштейна

Альберт Эйнштейн, которого многие считают самым выдающимся ученым всех времен и народов; создатель теории относительности, перевернувший все представления о времени и пространстве; Эйнштейн, с работ которого началась атомная эра в истории человечества, в конце жизни оказался в полной интеллектуальной изоляции, никому не нужный и не интересный. Как такое могло произойти, какие ошибки великого физика привели к столь печальному финалу? Об этом – новая книга известного американского писателя, лауреата множества литературных премий, автора бестселлеров «E = mc².


Рекомендуем почитать
Моделирование рассуждений. Опыт анализа мыслительных актов

Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.Для широкого круга читателей.


Скоростное конспектирование

Описана система скоростной конспективной записи, позволяющая повысить в несколько раз скорость записи и при этом получить конспект, удобный для чтения и способствующий запоминанию материала. Излагаемая система позволяет на общей основе создать каждому человеку личные приемы записи, эриентированные на специфику конспектируемых текстов.Книга может быть полезна студентам, школьникам старших классов, научным работникам, слушателям курсов повышения квалификации.


Был ли маневр над Тунгуской

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Библиография как историческая наука

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Познай себя

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


О гравитации нетрадиционно

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.