Движение. Теплота - [76]

Шрифт
Интервал

Даже если читатель и не встречался никогда с железным паром и твердым воздухом, он, вероятно, без труда поверит, что любое вещество изменением температуры можно получать и в твердом, и в жидком, и в газообразном состоянии, или, как еще говорят, в твердой, жидкой или газовой фазе.

Поверить в это легко потому, что одно вещество, без которого жизнь на Земле была бы невозможной, каждый наблюдал и в виде газа, и как жидкость, и в виде твердого тела. Речь идет, конечно, о воде.

При каких же условиях происходят превращения вещества из одного состояния в другое?

Кипение

Если опустить термометр в воду, которая налита в чайник, включить электроплитку и следить за ртутью термометра, то мы увидим следующее: почти сразу же уровень ртути поползет кверху. Вот уже 90°, 95°, наконец 100°. Вода закипает, и одновременно прекращается подъем ртути. Вода кипит уже много минут, но уровень ртути не изменяется. Пока вся вода не выкипит, температура не изменится (рис. 97).



На что же идет тепло, если температура воды не меняется? Ответ очевиден. Процесс превращения воды в пар требует энергии.

Сравним энергию грамма воды и грамма образовавшегося из нее пара. Молекулы пара расположены дальше одна от другой, чем молекулы воды. Понятно, что из-за этого потенциальная энергия воды будет отличаться от потенциальной энергии пара.

Потенциальная энергия притягивающихся частиц уменьшается с их сближением. Поэтому энергия пара больше энергии воды, и превращение воды в пар требует энергии. Этот избыток энергии и сообщается электроплиткой воде, кипящей в чайнике.

Энергия, нужная для превращения воды в пар, называется теплотой испарения. Для превращения 1 г воды в пар требуется 539 кал (это цифра для температуры 100 °C). Если 539 кал идет на 1 г, то на 1 грамм-молекулу воды будет затрачено 18·539 = 9700 кал. Такое количество тепла надо затратить на разрыв межмолекулярных связей.

Можно сравнить эту цифру с величиной работы, необходимой для разрыва внутримолекулярных связей. Для того, чтобы одну грамм-молекулу водяного пара расщепить на атомы, требуется около 220 000 кал, т.е. в 25 раз больше энергии. Это непосредственно доказывает слабость сил, связывающих молекулы друг с другом, по сравнению с силами, стягивающими атомы в молекулу.

Зависимость температуры кипения от давления

Температура кипения воды равна 100 °C; можно подумать, что это неотъемлемое свойство воды, что вода, где бы и в каких условиях она ни находилась, всегда будет кипеть при 100 °C.

Но это не так, и об этом прекрасно осведомлены жители высокогорных селений.

Вблизи вершины Эльбруса имеется домик для туристов и научная станция. Новички иногда удивляются, «как трудно сварить яйцо в кипятке» или «почему кипяток не обжигает». В этих случаях им указывают, что вода кипит на вершине Эльбруса уже при 82 °C.

В чем же тут дело? Какой физический фактор вмешивается в явление кипения? Какое значение имеет высота над уровнем моря?

Этим физическим фактором является давление, действующее на поверхность жидкости. Не нужно забираться на вершину горы, чтобы проверить справедливость сказанного.

Помещая подогреваемую воду под колокол и накачивая или выкачивая оттуда воздух, можно убедиться, что температура кипения растет при возрастании давления и падает при его уменьшении.

Вода кипит при 100 °C только при определенном давлении – 760 мм Hg.

Кривая температуры кипения в зависимости от давления показана на рис. 98. На вершине Эльбруса давление равно 0,5 атм, этому давлению и соответствует температура кипения 82 °C.



А вот водой, кипящей при 10–15 мм Нg, можно освежиться в жаркую погоду. При этом давлении температура кипения упадет до 10–15 °C.

Можно получить даже «кипяток», имеющий температуру замерзающей воды. Для этого придется снизить давление до 4,6 мм Hg.

Интересную картину можно наблюдать, если поместить открытый сосуд с водой под колокол и откачивать воздух. Откачка заставит воду закипеть, но кипение требует тепла. Взять его неоткуда, и воде придется отдать свою энергию. Температура кипящей воды начнет падать, но так как откачка продолжается, то падает и давление. Поэтому кипение не прекратится, вода будет продолжать охлаждаться и в конце концов замерзнет.

Такое кипение холодной воды происходит не только при откачке воздуха. Например, при вращении гребного корабельного винта давление в быстро движущемся около металлической поверхности слое воды сильно падает и вода в этом слое закипает, т.е. в ней появляются многочисленные наполненные паром пузырьки. Это явление называется кавитацией (от латинского слова cavitas – полость).

Снижая давление, мы понижаем температуру кипения. А увеличивая его? График, подобный нашему, отвечает на этот вопрос. Давление в 15 атм может задержать кипение воды, оно начнется только при 200 °C, а давление в 80 атм заставит воду закипеть лишь при 300 °C.

Итак, определенному внешнему давлению соответствует определенная температура кипения. Но это утверждение можно и «перевернуть», сказав так: каждой температуре кипения воды соответствует свое определенное давление. Это давление называется упругостью пара.


Еще от автора Александр Исаакович Китайгородский
Молекулы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Что такое теория относительности

Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.


Физические  тела

Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.


Электроны

«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.


Рекомендуем почитать
Этот правый, левый мир

Симметрия и асимметрия в математике, искусстве, философии, астрономии, зоологии, анатомии, химии, ядерной физике — предмет волнующих открытий для всех любознательных. Почему у нарвала бивень имеет левую «резьбу»? Будут ли марсианские асимметричные вирусы пагубны для космонавтов, а земные — для марсиан? Что такое «бустрафедон» и какое это отношение имеет к двум крупнейшим научным открытиям последнего десятилетия — ниспровержению физиками закона сохранения четности и открытию биологами винтообразного строения молекулы, которая несет генетический код? Об этом и еще очень многом из правого, левого мира вы сможете прочитать в этой живой и занимательной книге.


Физика элементарных частиц материи

Мировое пространство – мир. Мир – это бесконечное пространство во всех измерениях, это объективная реальность ни от чего не зависящая, существующая сама по себе. Мировое пространство – это безграничная, бесконечная пустота. Космос – это пространство между отдельными космическими объектами.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Нелокальность

«Впервые я узнал о нелокальности в начале 1990-х, будучи аспирантом, причем не от своего преподавателя квантовой механики: он не посчитал нужным даже упомянуть о ней. Роясь в местном книжном магазине, я наткнулся на только что изданную книжку «Сознательная вселенная» (The Conscious Universe), которая поразила меня заявлением о том, что «ни одно предыдущее открытие не бросало больший вызов нашему восприятию повседневной реальности», чем нелокальность. Это явление походило по вкусу на запретный плод…».


Законы движения

Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.


Золотое правило

В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.


Фотоны и ядра

В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.