Движение. Теплота - [56]
Сверхвысокие давления порядка 300 000 атмосфер на больших площадях образуются при взрывах твердых и жидких взрывчатых веществ – нитроглицерина, тротила и пр.
Несравненно более высокие давления, достигающие 10>13 атмосфер, возникают внутри атомной бомбы при взрыве.
Давления при взрыве существуют очень короткое время. Постоянные высокие давления имеются в глубинах небесных тел, в том числе, конечно, и в глубине Земли. Давление в центре земного шара равно примерно 3 миллионам атмосфер.
Поверхностные силы
Можно ли выйти сухим из воды? Конечно, для этого нужно смазаться несмачивающимся водой веществом.
Натрите палец парафином и опустите в воду. Когда вы его вынете, окажется, что воды на пальце нет, если не считать двух-трех капелек. Небольшое движение – и капельки стряхиваются.
В этом случае говорят: вода не смачивает парафин. Ртуть ведет себя таким образом по отношению почти ко всем твердым телам: ртуть не смачивает кожу, стекло, дерево…
Вода более капризна. Она тесно льнет к одним телам и старается не соприкасаться с другими. Вода не смачивает жирные поверхности, но хорошо смачивает чистое стекло. Вода смачивает дерево, бумагу, шерсть.
Если капельку воды нанести на чистое стекло, то она растечется и образует очень тонкую лужицу. Если такую же капельку опустить на парафин, то она так и останется капелькой почти сферической формы, чуть придавленной силой тяжести.
К веществам, «пристающим» почти ко всем телам, относится керосин. Стремясь растечься по стеклу или металлу, керосин способен выползать из плохо закрытого сосуда. Лужица пролитого керосина может на долгое время отравить существование: керосин захватит большую поверхность, заползет в щели, проникнет в одежду. Поэтому так трудно избавиться от его малоприятного запаха.
Несмачивание тел может привести к любопытным явлениям. Возьмите иголку, смажьте ее жиром и аккуратно положите плашмя на воду. Иголка не утонет. Внимательно всматриваясь, можно заметить, что иголка продавливает воду и спокойно лежит в образовавшейся ложбинке. Однако достаточно легкого нажатия, и иголка пойдет ко дну. Для этого нужно, чтобы значительная ее часть оказалась в воде.
Это интересное свойство используется водоплавающими насекомыми, быстро бегающими по воде, не замочив лапок.
Смачивание используется при флотационном обогащении руд. Слово «флотация» значит «всплывание». Сущность явления состоит в следующем. Тонко измельченную руду загружают в чан с водой, туда добавляют небольшое количество специального масла, которое должно обладать свойством смачивать крупинки полезного ископаемого и не смачивать крупинки «пустой породы» (так называют ненужную часть руды). При перемешивании крупинки полезного ископаемого обволакиваются маслянистой пленкой.
В черную кашу из руды, воды и масла вдувается воздух. Образуется множество мелких пузырьков воздуха – пена. Пузырьки воздуха всплывают. Процесс флотации основан на том, что обвернутые маслом крупинки цепляются за воздушные пузырьки. Крупный пузырек выносит маленькую крупинку вверх, как воздушный шар.
Полезное ископаемое переходит в пену на поверхность. Пустая порода остается на дне. Пену снимают и направляют в дальнейшую обработку для получения так называемого «концентрата», который содержит в десятки раз меньшую долю пустой породы.
Силы сцепления поверхностей способны нарушить уравнивание жидкости в сообщающихся сосудах. Справедливость этого очень легко проверить.
Если тоненькую (доля миллиметра в диаметре) стеклянную трубочку опустить в воду, то в нарушение закона сообщающихся сосудов вода в ней быстро начнет подниматься вверх, и уровень ее установится существенно выше, чем в широком сосуде (рис. 84).
Что же произошло? Какие силы удерживают вес поднявшегося столба жидкости? Подъем произведен силами сцепления воды со стеклом.
Силы поверхностного сцепления отчетливо проявляются лишь тогда, когда жидкость поднимается в достаточно тонких трубках. Чем у́же трубочка, тем выше поднимется жидкость, тем отчетливее явление. Название этих поверхностных явлений связано с названием трубочек. Канал в такой трубке имеет диаметр, измеряющийся долями миллиметра; такую трубку называют капиллярной (что значит в переводе: «тонкой, как волос»). Явление подъема жидкости в тонких трубках называется капиллярностью.
На какую же высоту способны поднять жидкость капиллярные трубки? Оказывается, в трубке диаметра 1 мм вода поднимается на высоту 1,5 мм. При диаметре 0,01 мм высота подъема возрастет во столько же раз, во сколько уменьшился диаметр трубки, т.е. до 15 см.
Разумеется, подъем жидкости возможен лишь при условии смачивания. Нетрудно догадаться, что ртуть не будет подниматься в стеклянных трубках. Наоборот, ртуть в стеклянных трубках опускается. Ртуть так не «терпит» соприкосновения со стеклом, что стремится сократить общую поверхность до того минимума, который разрешает сила тяжести.
Существует множество тел, которые представляют собой нечто вроде системы тончайших трубок. В таких телах всегда наблюдаются капиллярные явления.
Целая система длинных каналов и пор имеется у растений и деревьев. Диаметры этих каналов меньше сотых долей миллиметра. Благодаря этому капиллярные силы поднимают почвенную влагу на значительную высоту и разносят воду по телу растения.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.
Физика, как всем известно, – наука об окружающем мире, но мало кто умеет видеть связь между тем, что вокруг нас и скучными формулами в учебнике. В действительности, чтобы начать разбираться в этом, на первый взгляд, запутанном клубке из законов и сложных вычислений, достаточно посмотреть на любое явление изнутри – как оно устроено, словно мы собираем большую головоломку из разных деталей. Схемы, графики, чертежи, наглядные рисунки – это верные спутники любого ученого. Чтобы решить любую физическую задачку, нужно включить свою фантазию – вот ключ к пониманию этой науки. Этот сборник поможет увидеть, как на самом деле работают законы физики.
Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.
Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.
Эта книга поможет вам понять, как устроен окружающий мир и чем занимается физика как наука. Легким и неформальным языком она расскажет о физических законах и явлениях, с которыми мы сталкиваемся в повседневной жизни.
Симметрия и асимметрия в математике, искусстве, философии, астрономии, зоологии, анатомии, химии, ядерной физике — предмет волнующих открытий для всех любознательных. Почему у нарвала бивень имеет левую «резьбу»? Будут ли марсианские асимметричные вирусы пагубны для космонавтов, а земные — для марсиан? Что такое «бустрафедон» и какое это отношение имеет к двум крупнейшим научным открытиям последнего десятилетия — ниспровержению физиками закона сохранения четности и открытию биологами винтообразного строения молекулы, которая несет генетический код? Об этом и еще очень многом из правого, левого мира вы сможете прочитать в этой живой и занимательной книге.
Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.