Движение. Теплота - [5]

Шрифт
Интервал

Так что, измеряя пружиной величину какой-либо силы, мы измеряем величину не одной, а двух сил, противоположно направленных. Пружинные весы измеряют и давление груза на чашку весов, и реакцию опоры – действие чашки весов на груз. Прикрепив пружину к стене и растягивая ее рукой, мы можем измерить силу, с которой рука тянет пружину, и одновременно силу, с которой пружина тянет руку.

Таким образом, силы обладают замечательным свойством: они встречаются всегда по две и притом равными и противоположно направленными. Эти две силы и называют обычно действием и противодействием.

«Одиночных» сил в природе не существует, реально существуют лишь взаимодействия между телами; при этом силы действия и противодействия неизменно равны, они относятся одна к другой как предмет и изображение в зеркале.

Не надо путать уравновешивающихся сил с силами действия и противодействия.

Про силы говорят, что они уравновешены тогда, когда они приложены к одному телу; так, вес книги, лежащей на столе (действие Земли на книгу), уравновешивается реакцией стола (действие стола на книгу).

В противоположность силам, которые возникают при уравновешивании двух взаимодействий, силы действия и противодействия характеризуют одно взаимодействие, например стола с книгой. Действие – «стол – книга», противодействие – «книга – стол». Конечно, эти силы приложены к разным телам.

Постараемся объяснить традиционное недоумение: «лошадь тянет телегу, но ведь и телега тянет лошадь; почему же они движутся?» Прежде всего надо напомнить, что лошадь не потянет телегу, если дорога скользкая. Значит, для объяснения движения надо учесть не одно, а два взаимодействия – не только «телега – лошадь», но и «лошадь – дорога». Движение начнется тогда, когда сила взаимодействия лошади с дорогой (сила, с которой лошадь отталкивается от дороги) станет больше силы взаимодействия «лошадь – телега» (силы, с которой телега тянет лошадь). Что же касается сил «телега тянет лошадь» и «лошадь тянет телегу», то они характеризуют одно и то же взаимодействие, а значит, будут одинаковы и в покое, и в любой момент движения.

Как складывать скорости

Если я ждал полчаса и еще час, то всего я потерял времени полтора часа. Если мне дали рубль, а затем еще два, то я всего получил три рубля. Если я купил 200 г винограда, а затем еще 400 г, то у меня будет 600 г винограда. Про время, массу и другие подобные величины говорят, что они складываются алгебраически.

Однако не всякие величины можно так просто складывать и вычитать. Если я скажу, что от Москвы до Коломны 100 км, а от Коломны до Каширы 40 км, то отсюда не следует, что Кашира находится от Москвы на расстоянии 140 км. Расстояния не складываются алгебраически.

Как же еще можно складывать величины? На нашем примере мы легко найдем нужное правило. Нанесем на бумагу три точки, которые указывают взаимное расположение интересующих нас трех пунктов (рис. 4). На этих трех точках можно построить треугольник. Если две стороны его известны, то можно найти и третью. Для этого, однако, надо знать угол между двумя заданными отрезками.

Неизвестное расстояние находят следующим образом: отложим первый отрезок и из конца его по заданному направлению построим второй. Теперь соединим начало первого отрезка с концом второго. Искомый путь изобразится замыкающим отрезком.

Сложение описанным способом называется геометрическим, а величины, складываемые этим способом, называются векторами.

Для того чтобы отличить начало и конец отрезка, его снабжают стрелкой. Такой отрезок – вектор – указывает длину и направление.



Это правило применяется и при сложении нескольких векторов. Переходя из первой точки во вторую, из второй в третью и т.д., мы пройдем путь, который можно изобразить ломаной линией. Но к той же самой точке можно пройти прямо из отправного пункта. Этот отрезок, замыкающий многоугольник, и будет векторной суммой.

Векторный треугольник показывает, разумеется, и как вычитать один вектор из другого. Для этого проводят их из одной точки. Вектор, проведенный из конца второго в конец первого, и будет разностью векторов.

Кроме правила треугольника, можно пользоваться равноценным ему правилом параллелограмма (рис. 5).



Это правило требует построения параллелограмма на складывающихся векторах и проведения диагонали из их пересечения. На рисунке видно, что диагональ параллелограмма и есть замыкающая треугольника. Значит, оба правила одинаково пригодны.

Векторы используются для описания не только перемещений. Векторные величины встречаются в физике часто.

Рассмотрим, например, скорость движения. Скорость есть перемещение за единицу времени. Раз перемещение – вектор, то и скорость – вектор, смотрящий в ту же сторону. При движении по кривой линии направление перемещения все время изменяется. Как же ответить на вопрос о направлении скорости? Небольшой отрезок кривой направлен так же, как касательная. Поэтому перемещение и скорость тела в каждый данный момент направлены по касательной к линии движения.

Складывать и вычитать скорости по правилу векторов приходится во многих случаях. Необходимость в сложении скоростей возникает, когда тело участвует одновременно в двух движениях. Такие случаи нередки: человек идет по поезду и, кроме того, движется вместе с поездом; капля воды, стекающая по стеклу вагонного окна, движется вниз под действием веса и путешествует вместе с поездом; земной шар движется вокруг Солнца и вместе с Солнцем совершает движение по отношению к другим звездам. Во всех этих и других подобных случаях скорости складываются по правилу сложения векторов.


Еще от автора Александр Исаакович Китайгородский
Что такое теория относительности

Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.


Молекулы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Электроны

«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.


Как измеряются расстояния между атомами в кристаллах

О рентгеноструктурном анализе атомной структуры кристаллов.


Проблема № 2

Статья о явлении сверхпроводимости из журнала «Техника – молодежи» № 11, 1975.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.


Физические  тела

Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.


Фотоны и ядра

В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.