Движение. Теплота - [118]
Понятно, что ветряной двигатель можно обратить: если какой-либо мотор будет вращать его, то лопасти будут отбрасывать сильную струю воздуха вдоль оси вращения. При установке такой системы на глиссере, самолете или вертолете мы говорим о воздушном винте. Реакция струи, отбрасываемой винтом, тянет глиссер или самолет и создает подъемную силу у вертолета.
По-видимому, первым двигателем, использованным человеком для своих нужд, была водяная (гидравлическая) турбина в самой примитивной ее модификации – в виде водяного колеса.
Рис. 133 изображает так называемое подливное водяное колесо. Ударяясь о погруженную в воду лопатку колеса, струя воды отдает ей часть своей кинетической энергии. Лопатка приходит в движение. Так как она жестко связана с колесом, то колесо начинает вращаться. Но сразу видно, что перпендикулярно к потоку в каждый момент времени может стоять только одна лопатка. Остальные образуют острые углы с набегающими струями, отбирая от них меньше энергии, чем перпендикулярная лопатка. Коэффициент полезного действия такого колеса невысок. Путь его повышения очевиден: надо сделать так, чтобы перпендикулярно к набегающему потоку стояли все лопатки колеса. Осуществить эту идею удается при помощи направляющего аппарата. Из рис. 134 ясно, что при этом для успешной работы турбины необходимо наличие разности уровней воды. Мы приходим к схеме современной гидроэлектростанции, мощная плотина которой с громадной силой бросает массы воды на лопатки турбин. Выполненные на высоком уровне современного инженерного искусства, гидравлические турбины проектируются на мощности, превышающие 100000 кВт, и имеют при этом КПД 95 %. Поскольку эти мощности создаются при довольно малых оборотах (порядка 100 в минуту), строящиеся сейчас гидравлические турбины поражают размерами и весом. Так, высота рабочего колеса турбины Волжской ГЭС им. Ленина – около 10 м, вес 420 т.
Важное преимущество турбины – чрезвычайная простота преобразования поступательного движения воды во вращательное движение. Поэтому этот принцип широко используется в двигателях, внешне совершенно не напоминающих водяные колеса. Когда на лопатки давит пар, то мы имеем паровую турбину. Нам уже известно, что для повышения КПД необходимо повышать температуру рабочего тела. На современных тепловых электростанциях (ТЭЦ) в турбины пускается пар, имеющий температуру 580 °C и давление 240 атм. Теоретический предел КПД такой турбины, если считать, что холодильник имеет температуру 20 °C, равен 66 %. Практически достигается КПД, равный 42 %. Таким образом, паровые турбины – это хорошие современные двигатели. Они имеют мощность до 300 000 кВт в одной установке. Такая турбина расходует более 900 т пара высокого давления в час. Но совершенно ясно, что получение подобных количеств пара – сложная техническая задача. Паровые котлы высокого давления и система подготовки и подачи топлива занимают большую часть объема современной тепловой электростанции. Поэтому для транспортных целей паровые турбины употребляются лишь на крупных судах – турбоходах.
За последние годы в печати стало появляться слово «турбоэлектроход». Смысл этого названия выясняется просто: на таком корабле пар приводит в движение турбины, турбины в свою очередь приводят в движение мощные генераторы постоянного тока, а винты размещаются на валах электромоторов. Не лишнее ли это усложнение? Почему бы не поместить винт прямо на вал турбины? Здесь мы сталкиваемся с новым вопросом – тяговой характеристикой двигателя.
Дело в том, что паровая турбина развивает максимальную мощность лишь при строго определенных оборотах. Так, мощные турбины наших электростанций делают 3000 оборотов в минуту. При замедлении вращения мощность падает. Ясно, что если бы винты находились прямо на валу турбин, то корабль, снабженный такой силовой установкой, обладал бы неважными ходовыми качествами. Электрический же мотор постоянного тока имеет идеальную тяговую характеристику: чем больше силы сопротивления, тем большее тяговое усилие он развивает, причем такой мотор может отдавать большую мощность при малых оборотах, в момент трогания с места.
Таким образом, генератор и мотор постоянного тока, стоящие между турбиной и винтом турбоэлектрохода, играют роль бесступенчатой автоматической коробки передач, обладающей высоким совершенством. Может показаться, что такая система несколько громоздка, но при больших мощностях современных турбоэлектроходов любая другая была бы столь же объемистой, но менее надежной.
Значительно усовершенствовать силовую установку турбоэлектрохода можно с другой стороны: весьма выгодно заменить громоздкие паровые котлы атомным реактором. При этом достигается огромная экономия на объеме топлива, которое приходится брать в рейс.
Мировую известность получил первый советский атомный ледокол «Ленин». Мощность его двигателей равна 44000 л.с., водоизмещение 16000 т. Ядерная силовая установка этого турбоэлектрохода обеспечивает автономность плавания более года.
Итак, для паровой турбины нужен мощный посторонний источник теплового потока. Будь то топка парового котла или урановый реактор, – на нынешнем уровне развития техники эти источники имеют настолько значительные размеры и вес, что установка паровой турбины на автомобиле или самолете совершенно нецелесообразна: слишком велик будет суммарный вес двигателя и нагревателя в пересчете на одну лошадиную силу. Нельзя ли избавиться от постороннего нагревателя, перенести его внутрь турбины?
Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.