Движение. Теплота - [106]
Так как λ = cT, то c = sqrt(gλ/(2π)). Значит, при возникновении сильного волнения в каком-либо районе моря до отдаленных мест добираются сначала самые длинные волны, у которых наибольшая скорость распространения.
Как передают звук твердые тела
Существует немаловажное различие между передачей звука через жидкие тела и газы, с одной стороны, и через твердые предметы – с другой. Различие это состоит в том, что в твердых телах наряду с продольными волнами могут возникнуть и поперечные.
Термин этот говорит сам за себя – поперечная волна обладает той особенностью, что частицы, участвующие в волновом процессе, совершают колебания не в направлении распространения волны, а в поперечном направлении – перпендикулярно к направлению распространения.
Звуковая волна в газах и жидкостях – это волна чередующихся сжатий и разрежений. Такая волна может быть только продольной – поперечные колебания частиц не могут вызвать местных изменений объема, т.е. не могут привести к сжатиям и разрежениям. Поперечная волна в жидкости и газе невозможна, так как эти среды сопротивляются сжатию и растяжению, но не сдвигу. Твердое тело сопротивляется не только изменению своего объема, но и изменению формы, поэтому наряду с продольными волнами в твердом теле могут возникнуть и поперечные.
При распространении поперечной волны в твердой среде образуется волна сдвига – частицы тела сдвигаются волной попеременно в разные стороны от линии ее распространения. Продольные же волны в твердой среде сопровождаются сжатиями и разрежениями, как и волны в жидкостях и газах.
Поперечная и продольная волны передают звук одинаково хорошо, но не одинаково быстро. Продольные волны распространяются всегда быстрее поперечных.
Вот характерные цифры. В стали скорость поперечных волн – около 3000 м/с, а продольных – 6000 м/с. Меньшую скорость распространения имеет звук в мягком свинце – 700 м/с для поперечных волн и 2200 м/с для продольных.
Особенно велико отношение между скоростью продольных и поперечных волн в резине. Резина очень слабо сопротивляется изменению формы, но совсем нелегко изменяет свой объем. Поперечные волны распространяются в резине со скоростью всего 30 м/с – в 10 раз меньшей, чем скорость звука в воздухе.
Кроме этих двух типов волн по твердому телу распространяются также поверхностные волны. Однако они совершенно не похожи на морские волны, для которых силой, возвращающей отклоненные частички, является сила тяжести. Волны на поверхности твердого тела поддерживаются упругими силами, связывающими частицы твердого тела. Естественно поэтому, что скорость поверхностных волн зависит от упругих свойств. Примерно скорость поверхностных волн составляет 0,9 скорости распространения поперечных волн. Так же как и в жидкости, траектории колеблющихся частичек лежат в плоскости, поперечной к волновому фронту. Точки движутся по замкнутым кривым, похожим на эллипсы. По мере отдаления от поверхности вид эллипса меняется, амплитуда колебания становится меньше, волна затухает.
Вестники землетрясения
Земля хорошо передает звук. Почти в каждом романе из времен средневековья вы найдете сцену погони за скачущим на коне героем. «Всадник вдруг остановил коня, спешился и приложил ухо к земле: “За нами погоня, нужно спешить!”». Действительно, удары копыт лошади о землю передаются на расстояние более километра. Земля, как и всякое упругое тело, служит проводником звуковых волн.
Звуковые волны, распространяющиеся через землю, приносят нам сведения о землетрясениях и знакомят с процессами, происходящими в земной толще. Звуковые волны, возникающие при землетрясении, называются сейсмическими. Наличие сейсмической волны, ее амплитуда, скорость, длина, частота колебания – все это может быть определено специальными очень чуткими приборами – сейсмографами.
Сейсмографы – сложные приборы. Но принцип их действия понять легко. Основная часть сейсмографа – это тяжелый груз, подвешенный на пружине. При вертикальном смещении почвы точка подвеса пружины с грузом сместится так, как показано на рис. 126. Вследствие большой инерции груз вначале остается на месте. К грузу прикреплено перо, а с подставкой жестко скреплена бумага. Когда подставка сместится, перо прочертит на бумаге вертикальную линию. Чтобы записать сейсмическую волну, надо протягивать бумагу.
Кроме таких сейсмографов, записывающих вертикальные смещения почвы, употребляются и горизонтальные сейсмографы. Принцип действия горизонтального сейсмографа показан на рис. 127. Главной частью прибора является почти вертикальный стержень. Эксцентричный груз превращает этот стержень в маятник, способный поворачиваться около оси стержня. Если почва спокойна, то груз маятника покоится в самом низком положении. Толчок в горизонтальном направлении вызывает смещение оси маятника, между тем как тяжелый груз по инерции вначале остается на месте. Поворот маятника регистрируется самопишущим устройством.
Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.