Движение молекул - [6]
Если взять бутылку, наполненную воздухом, и закрыть горлышко пробкой со вставленным в неё термометром, то можно, быстро двигая бутылку, придать всем молекулам, находящимся в ней, добавочную скорость. Однако, смотря время от времени на термометр, можно убедиться в том, что движение бутылки не вызывает повышения температуры. Это вполне понятно: ведь скорость беспорядочного движения молекул в нашем опыте не изменилась, а общее всем молекулам движение вместе с бутылкой не влияет на температуру.
Хорошо известно, что если привести в соприкосновение две порции газа, одна из которых холодная, а другая горячая, то первая нагреется, а вторая остынет, и вся смесь примет одинаковую температуру.
Это объясняется тем, что более быстрые молекулы нагретого газа, ударяя медленные молекулы холодного, отдают им часть своей энергии и благодаря этому сами начинают двигаться медленнее, "ибо тело, движущее своей силой другое, столько же оной у себя теряет, сколько сообщает другому, которое от него движение получает", как писал Ломоносов.
Спустя некоторое время, в результате бесчисленных соударений, установится общая всем молекулам смеси средняя скорость. Она будет больше, чем у холодной, но меньше, чем у горючей порции газа, и именно она определит температуру смеси.
Из того, что температура газа определяется скоростью движения его молекул, вытекают два важных заключения.
Повышая температуру газа, мы повышаем скорость движения его частиц и, поскольку для повышения скороста практически нет предела, то можно считать, что температура может неограниченно увеличиваться. Известно, что астрономы предполагают внутри звёзд температуры, исчисляемые миллионами градусов.
Рис. 6. Температура различных тел. На нижних рисунках указана температура поверхности Солнца и звёзд.
С другой стороны, "то же самое движение, — как писал Ломоносов, — может настолько уменьшиться, что никакое дальнейшее уменьшение движения будет невозможно". И Ломоносов совершенно правильно заключил, что "по необходимости должна существовать наибольшая и последняя степень холода".
Следовательно, нельзя безгранично охлаждать газ. Рано или поздно мы достигнем такой его температуры, когда скорость теплового движения молекул уменьшится до нуля. Дальнейшее охлаждение станет невозможным. Как оказалось, на 273,23 градуса ниже нуля надо охладить газ для того, чтобы прекратилось беспорядочное тепловое движение его молекул. Точку, лежащую на 273,23 градуса ниже обычного нуля, называют абсолютным нулём.
Не думайте, однако, что при абсолютном нуле полностью исчезнет движение, это прирождённое свойство материи. Нет. Исчезнет только тепловое движение, а сохранившееся движение уже не будет зависеть от температуры.
Свойства веществ сильно изменяются при очень низких температурах. При температуре около минус 200 градусов резиновый мячик делается хрупким, как стеклянный шарик; как серебряный, звенит при этой температуре свинцовый колокольчик.
Много интересного и нового открыли советские учёные, работающие в Институте физических проблем и изучающие свойства веществ при температурах, близких к абсолютному нулю.
5. На пути к порядку
До сих пор мы говорили только о газах, а что можно сказать о жидкостях? Как ведут себя их молекулы? Попробуем дать ответ и на этот вопрос.
Всякое вещество в жидком состоянии занимает объём меньший, чем в парообразном. Один стакан воды, например, занимает объём, равный приблизительно 0,2 литра. То же количество воды в виде водяного пара займёт объём, приблизительно в полторы тысячи раз больший (рис. 7). Значит, молекулы воды находятся много ближе друг к другу, чем молекулы водяного пара. Если молекулы газа или пара движутся по причудливо изломанным линиям, то в жидкости движение молекул больше напоминает дрожание, при котором молекулы только очень медленно перемещаются вперёд, постоянно возвращаемые назад ударами соседних молекул. Сравнительно редко какой-либо молекуле удаётся вырваться из тесного окружения своих соседей. Большую же часть времени она движется как бы в клеточке, стенки которой образуют ближайшие к ней молекулы.
Рис. 7. Если стакан воды обратить в пар, то пар при атмосферном давлении будет занимать бак объёмом в 320 литров.
Почему же поверхность спокойной жидкости представляется нам неподвижной, почему мы не замечаем непрерывного дрожания молекул?
Ещё Ломоносов в одном из своих сочинений писал: "Ведь нельзя отрицать существование движения там, где его не видно: кто, в самом деле, будет отрицать, что когда через лес проносился сильный ветер, то листья и сучки дерев колышатся, хотя бы при рассматривании издали глаз не видел движения. Точно так же как здесь вследствие расстояния, так и в тёплых телах вследствие (малости частиц движущейся материи, колебание ускользает от взора".
И в самом деле. Посмотрите на лезвие безопасной бритвы. Каким ровным и гладким оно нам представляется. А теперь взгляните на рисунок 8. На нём изображён маленький участок того же лезвия, каким он виден в электронный микроскоп. А ведь вы знаете, что обычные по своим размерам молекулы в электронный микроскоп не видны. Понятно поэтому, что нельзя увидеть глазами тепловое движение молекул.
Открытые в начале XX века ультразвуки нашли широкое применение в самых разнообразных областях науки и техники. Они помогают обнаруживать подводные лодки и различные препятствия на дне морей и рек, используются для промера глубин, для контроля качества металлических конструкций и деталей, для очистки воздуха, в медицине и фармацевтической промышленности и т. д. О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках».
Разве не великан человеческая мысль, создавшая науку, могущество которой безгранично? Да, великан. И из биографии его мы узнаем, что зародился он в дремучем мозгу нашего обезьяноподобного пращура, с рычанием отбивавшегося от хищного мира животных. Шли века… Великан гигантски вырос и поднял человека в космос, к планетам, к звездам! О развитии, победах и поражениях человеческого знания, боровшегося с силами природы, с темными силами мракобесия, и рассказывается в этой книге.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
…Люди научились точно учитывать время, когда развилась астрономия — наука о небесных светилах. Только благодаря астрономии мы умеем точно ответить на вопросы: «который час?», «какое сегодня число?», так как эта наука дала правила выверки часов и правила счета дней и годов, то есть то, что называется календарем. Объяснению этих правил и посвящена предлагаемая брошюра.
Каким образом научились записывать звук, какие для этого пришлось придумать машины, как совершенствовались эти машины со временем, какую роль играет искусство записи и повторения звука в современной жизни — обо всем этом и рассказывается в нашей книге.
В брошюре Г. И. Покровского «Наука и техника в современных войнах» говорится о большой роли современной науки и техники в военном деле. Автор рассматривает важнейшие проблемы естественных и технических наук, связанные с военным делом. Брошюра не претендует на полноту освещения затронутых в ней вопросов, на всестороннее их рассмотрение. Автор стремился дать материал для суждений на эту тему, помочь военнослужащим в развитии творческой мысли и в самостоятельной работе по обобщению опыта учебы, воспитания и боевой подготовки, в выработке смелого, верного научного предвидения, чтобы никакие неожиданности не могли застать их врасплох.Брошюра рассчитана на офицеров Советской Армии, Авиации и Флота.
В последние годы развития радиотехники возникло большое число новых применений радио. Этот период, по словам видного советского радиоспециалиста академика А.И. Берга, является «началом эпохи радиоэлектроники, так как именно в эти годы началось широчайшее внедрение радиоэлектронных методов во все отрасли науки, техники и народного хозяйства»…