Двигатели жизни. Как бактерии сделали наш мир обитаемым - [60]

Шрифт
Интервал

Предположение о том, что глаз со всеми его несравненными приспособлениями для фокусировки на различные расстояния, для пропускания различного количества света, для корректировки сферической и цветовой аберрации мог быть сформирован в результате естественного отбора, признаюсь откровенно, кажется в высочайшей степени абсурдным. Тем не менее здравый смысл говорит мне, что если будет доказано, что существуют многочисленные градации от совершенного и сложного глаза до глаза весьма несовершенного и простого, притом что каждая градация окажется полезной для ее обладателя (а это, несомненно, так и есть); если, далее, глаз понемногу изменяет свое строение и эти изменения наследуются (что также несомненно); если любая вариация или модификация этого органа оказывается полезной для животного в изменяющихся условиях его жизни – тогда препятствие, мешающее нам поверить, что совершенный и сложно построенный глаз мог сформироваться путем естественного отбора, хотя и непреодолимое для нашего воображения, едва ли можно считать существующим в действительности.

Дарвин не мог знать, что у микроорганизмов имеется несколько типов органов, чувствительных к свету. В глазах животных присутствует пигмент ретиналь (получаемый из витамина А), связанный с белком опсином. Опсины составляют весьма обширное семейство белков, которые все имеют одинаковое базовое строение – семь спиралей, охватывающих клеточную мембрану. У животных белок, содержащий ретиналь, является светочувствительным датчиком, но очень похожие пигменты, связанные с другими белками-опсинами, найдены также у многих микроорганизмов. Эти пигменты, родопсины, чрезвычайно распространены во всем Мировом океане. Произошли ли эти два пигментно-белковых комплекса от одного общего предка? По всей видимости, ответ отрицательный. Опсины, судя по всему, эволюционировали независимо и по меньшей мере в два отдельных временных периода. У прокариотов и некоторых одноклеточных эукариотов они часто служат для подкачки протонов, используемых для генерации электрического градиента по разные стороны клеточной мембраны. Эти пигментно-белковые комплексы также имеют семь трансмембранных спиралей, но их аминокислотные последовательности совершенно не похожи на опсины в глазах животных. У микроорганизмов этот пигментно-белковый комплекс используется для выработки энергии. При помощи родопсинов микроорганизмы продвигают протоны через свои клеточные мембраны. Протоны вытекают через вращающийся фактор сопряжения, позволяя клетке синтезировать АТФ при наличии света. Однако те же самые пигментно-белковые комплексы могут также действовать как светочувствительные датчики. У многих одноклеточных эукариотов родопсины дают клетке возможность плыть в направлении света определенных цветов. Этот пигмент большей частью сохранился и был вновь использован в совокупности с другими белками, обладающими примечательно сходным строением, у широкого круга одноклеточных эукариотов, а позднее и у животных, где он был связан с еще одним белком.

Стигмы, или глазки, найденные у нескольких типов одноклеточных водорослей, представляют собой примитивные оптические датчики, содержащие родопсины. Гены этих опсинов, по-видимому, передавались горизонтальным путем через несколько микробиотических линий. Опсины найдены также у кораллов, где эти пигментно-белковые комплексы ощущают свет, и это служит животному знаком для начала размножения. В процессе эволюции настоящего глаза, способного не только чувствовать свет, но также фокусироваться на изображении, родопсины подобного типа образуют прослойки внутри мембран. Линза, состоящая из коллагена, исполняет роль оптического «объектива», соединенного с сенсорными системами, в свою очередь связанными с мозгом – сложным органом, способным регистрировать изображения и сравнивать их с предыдущими записями. При эмбриологическом развитии позвоночных глаза формируются как непосредственное продолжение мозга.

Как уже говорилось, все живые клетки поддерживают электрический градиент по разные стороны своей клеточной мембраны. Этот градиент играет важнейшую роль в транспортировке питательных веществ из окружающей среды внутрь клетки и отходов жизнедеятельности из клетки обратно в окружающую среду, но также действует и в качестве сенсорной системы, позволяя клеткам ощущать градиенты освещения, температуры или содержания питательных веществ. У животных развились специальные клетки – нейроны, координирующие поведение посредством передачи электрической энергии. В процессе эволюции животных сенсорные системы, такие как органы вкуса, обоняния и зрения, также генерировали электрический сигнал и должны были быть скоординированы с движением, чтобы животное могло ловить добычу, совокупляться с животными противоположного пола своего вида, убегать от хищников и учиться.

Эти основные функции, насущные для выживания любого животного, унаследованы от клеточных мембран, сформировавшихся за миллиарды лет до них. Однако для создания внутри животных «электропроводки» и мозга были необходимы значительные обновления. Клетка должна была наладить селекцию информации, то есть научиться включать «рубильник» для генерирования электрического разряда и передачи сигнала по «проводам» всего лишь на мгновение. Сигнал должен был иметь направленность – пересылаться по проводу только в один конец, но не в другой. И кроме того, клетка должна была уметь передавать сигнал другой клетке, чтобы расширять или координировать коммуникационную сеть, а это требовало развития химической коммуникационной системы. Химические сигналы основываются на простых молекулах, многие из которых произошли от аминокислот, и такая коммуникационная система в животных клетках строится на основе кворумного восприятия у микроорганизмов. Все эти эволюционные новшества привели к созданию нервной системы и в конечном счете мозга, который собирал информацию и контролировал пути передачи сигнала в двухстороннем режиме – и ощущая, и отвечая на сигналы.


Рекомендуем почитать
Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 06 (972)

Ежемесячный научно-популярный и научно-художественный журнал.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.