Двигатели жизни. Как бактерии сделали наш мир обитаемым - [42]
Каково же было решение этой проблемы? Вместо того чтобы заново создавать в процессе эволюции новую версию белка D1, фотосинтезирующие организмы, расщепляющие воду, развили сложный механизм его восстановления. Этот восстанавливающий аппарат включает в себя распознавание поврежденного D1, удаление его из остального механизма, пока он еще находится в работе, и замену его новым белком, подходящим к тому месту, где находился поврежденный. Можно сравнить это с ситуацией, когда при каждой поездке на машине приходится брать с собой бригаду механиков, и через каждые 10 тысяч оборотов каждого колеса механикам приходится свешиваться наружу, чтобы выяснить, какая из шин повреждена, и потом заменять ее прямо во время движения. В случае с D1 это потребовало значительных эволюционных уловок. Однако это также позволило старому аппарату, унаследованному от пурпурных фотосинтезирующих бактерий, продолжать действовать в новых условиях – в присутствии кислорода.
Повреждение D1 вызывается присутствием определенных форм кислорода – тех, которым не хватает электронов, или, наоборот, тех, у которых их слишком много. Такие частицы кислорода – их называют активными – могут вызывать у белков большие повреждения, и в процессе эволюции возникли несколько ферментов, чтобы их детоксифицировать. Однако кислород и сам по себе также высокоактивен, в особенности когда вступает в контакт с наномеханизмами, содержащими железо. Одним из таких механизмов является фермент нитрогеназа, о котором мы уже говорили выше. Как и фотосинтетический аппарат, нитрогеназа несколько напоминает машину Руби Голдберга; она состоит из двух крупных белков, совместно поставляющих электроны и затем протоны к газообразному азоту. В отсутствие кислорода нитрогеназа функционирует вполне неплохо, однако при наличии кислорода атомы железа начинают «ржаветь», механизм перестает работать и вся система нуждается в замене. Можно было бы подумать, что по прошествии пары миллиардов лет, то есть с тех пор, когда на Земле появился кислород, природа должна была найти какой-то эволюционный способ, чтобы позволить нитрогеназе функционировать в присутствии кислорода, или, возможно, должен был появиться механизм другого типа, выполняющий ту же функцию. Однако ничего подобного не произошло.
Рис. 23. Изображение гетероцисты. В некоторых образующих нити видах цианобактерий (см., например, рис. 17, а), когда клетки начинают восстанавливать (связывать) атмосферный газообразный азот (N2) до аммония (NH4), они образуют особую клетку – гетероцисту, в которой отсутствует реакционный центр, испускающий кислород (фотосистема II). Нитрогеназа – фермент, отвечающий за связывание азота, – обнаруживается исключительно в гетероцистах, где она защищена от повреждения кислородом. Это один из самых ранних примеров дифференциации клеток в биологии. (Публикуется с разрешения Арнольда Тэйтона и Джеймса Голдена.)
В случае с нитрогеназой решением было физически отделить механизм от кислорода. В некоторых случаях клетки, содержащие фермент, были ограничены анаэробной средой; в других случаях развились специализированные клетки, которые были несколько менее проницаемы для кислорода, чем для азота (а это очень непросто, поскольку физический размер молекул этих газов практически одинаков). Еще в каких-то случаях были добавлены специальные процессы, поглощавшие или физически удалявшие кислород из аппарата нитрогеназы. Ни в одном из этих случаев решение нельзя назвать совершенным. В современных океанах в каждый отдельно взятый момент времени из-за кислорода бездействует около 30 % всей нитрогеназы. Это означает постоянное пополнение свалки использованных деталей, которые в конечном счете должны быть возвращены в оборот для производства новых наномеханизмов.
Последний пример еще более ошеломляющ. Он относится к очень старому наномеханизму – рубиско (акроним, образованный из названия рибулозобифосфаткарбоксилаза/оксигеназа). Рубиско представляет собой белковый комплекс, отвечающий за связывание углекислого газа во всех производящих кислород фотосинтезирующих организмах, а также у ряда других микроорганизмов, включая многих хемоавтотрофов. Иногда говорят, и не без основания, что рубиско – самый распространенный белок на планете; тем не менее, хотя он и отвечает за образование большей части клеточного вещества на Земле, это довольно неэффективный фермент.
Рубиско не так уж сложен, однако представляет собой большой белковый комплекс: он подразделяется на две подсистемы, которые должны работать вместе. Когда фермент работает как надо, он забирает углекислый газ, растворенный в воде, и присоединяет его к пятиуглеродному сахару, имеющему две фосфатные «рукоятки» (рибулозобифосфат), образуя две идентичные трехуглеродные молекулы. Этот процесс считается, хотя и небесспорно, самой важной биохимической реакцией на Земле. Это первый шаг, ведущий к фотосинтетическому образованию приблизительно 99 % органических соединений, от которых зависит вся остальная жизнь. Само существование всех животных, включая нас с вами, полностью зависит от рубиско.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.
Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.