Двигатели жизни. Как бактерии сделали наш мир обитаемым - [35]

Шрифт
Интервал

Одно из противоречий наших представлений о Кислородной катастрофе состоит в том, что непонятно, действительно ли понадобилось так много времени, чтобы она произошла, или же этот период был менее длительным? Если невероятно сложные наномеханизмы, способные расщеплять воду, возникли у цианобактерий, появившихся где-то незадолго до отметки в 2,4 млрд лет тому назад, то планету они преобразили за период в пределах ста миллионов лет или даже меньше. Однако же, если они возникли гораздо раньше, как доказывает геологическая летопись, почему понадобились сотни миллионов лет, чтобы кислород стал играть значительную роль в земной атмосфере? Ответить на этот вопрос не так просто, и все объяснения, существующие на сегодняшний день, достаточно противоречивы.

Рис. 19. Фотография геологического разреза отложений черного сланца, сформированных около 185 млн лет тому назад. Эта эпоха (нижний юрский период) была отмечена чрезвычайно высокой продуктивностью в океанах и последующим отложением углерода в осадочных толщах. (Публикуется с разрешения Баса ван де Схотбрюге.)


Долгое время я считал, что причиной задержки в сотни миллионов лет между возникновением цианобактерий и распространением в атмосфере кислорода было взаимодействие кислорода с железом и сульфидами, содержавшимися в архейском океане более 2,5 млрд лет тому назад. Кислород – наиболее распространенный элемент в земной коре, но не в виде свободного газа. Кислород очень неразборчив в связях и не любит долго оставаться один. Эта чрезвычайно активная молекула химически сочетается со множеством металлов и других элементов. Если вы положите гвоздь на несколько дней в хорошо аэрируемую воду, на нем образуется ржавчина, которая есть не что иное, как железо в сочетании с кислородом – оксид железа. Три миллиарда лет тому назад в океанах содержалось большое количество растворенного железа, и после возникновения наномеханизмов, расщепляющих кислород, на протяжении последующих нескольких сотен миллионов лет во многих частях океана на дно выпадали оксиды железа (ржавчина). Реакция кислорода с железом продолжалась почти два миллиарда лет, не требуя никакого биологического вмешательства. Железо будет ржаветь вне зависимости от присутствия микроорганизмов: все, что для этого требуется, – кислород и вода. Однако хотя окисление железа и связывало кислород, самые приблизительные подсчеты показывают, что один этот процесс не мог задержать распространение этого газа в атмосфере на сотни миллионов лет. Его накоплению должно было препятствовать что-то другое.

Продукция кислорода создала благоприятные возможности для развития у микроорганизмов новых метаболических путей. Эти новые возможности привели к изменениям в распределении и распространенности нескольких других элементов, в первую очередь серы и азота. До массовой продукции кислорода большая часть серы в океанах содержалась в форме сероводорода, газа с запахом тухлых яиц, который в то время, как и сейчас, поставлялся в океаническую толщу из глубоководных вулканов – гидротермальных источников, называемых «черными курильщиками». Вода, вытекающая из этих подводных трещин, чрезвычайно горяча – температура ее составляет около 300 ℃ – и содержит большие количества сульфидов и железа; охлаждаясь, они образуют минеральные трубки, состоящие из «золота дураков», пирита. В присутствии кислорода некоторые микроорганизмы развили у себя набор новых наномеханизмов, позволивший им забирать водород у сероводорода и использовать его для связывания углекислого газа и создания органических молекул. Благодаря кислороду образовался электрический градиент между богатыми электронами потоками и газами, выходящими из подводных расщелин, и бедным электронами газообразным кислородом и другими молекулами, содержащимися в океанических водах вокруг «черных курильщиков». Этот электрический градиент обеспечил движущую силу для нового типа метаболизма. В отличие от фотосинтезирующих зеленых серных бактерий наподобие тех, что живут в Черном море, эти сульфидокисляющие микроорганизмы гидротермальных источников могут расщеплять сероводород, не используя непосредственно энергию Солнца. Их механизм связывания углерода практически идентичен тому, что найден у цианобактерий, однако метаболическая инновация, получившая название хемоавтотрофии (то есть способности питать себя химическим путем), позволяет связыванию углерода происходить в глубинных, темных слоях океана – но лишь потому, что цианобактерии производят кислород в освещенной солнцем части океана на сотни и тысячи метров выше.

Основная концепция заключается в том, что, если водород непосредственно связан с кислородом, как в случае воды, необходимо большое количество энергии, чтобы разрушить эту связь. Единственным источником энергии, используемым для того, чтобы извлечь водород из воды биологическим путем, является видимая часть спектра излучения Солнца. Водород же, связанный с серой, извлечь гораздо проще. Чтобы извлечь водород из сульфида, требуется лишь около 10 % энергии, необходимой для извлечения его из воды, однако в присутствии кислорода сера может быть трансформирована микроорганизмами с образованием оксид-сульфата, в котором атом серы связан с четырьмя атомами кислорода.


Рекомендуем почитать
Золотая Орда. Монголы на Руси. 1223–1502

Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.


Великая разруха Московского государства, 1598–1612 гг.

В русской истории 14 лет, прошедших с 1598 по 1612 год, называют «разрухою» или «Смутным временем». «Смятения» Русской земли, или «Московская трагедия», как писали о ней иностранцы, началась с прекращением династии Рюриковичей, т. е. после кончины Царя Фёдора Ивановича, и кончилась, когда земские чины, собравшиеся в Москве в начале 1613 г., избрали на престол в Цари Михаила Фёдоровича, родоначальника новой династии Дома Романовых.


Камень, ножницы, теорема. Фон Нейман. Теория игр.

Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Получение энергии. Лиза Мейтнер. Расщепление ядра

Женщина, еврейка и ученый — непростая комбинация для бурного XX века. Австрийка по происхождению, Лиза Мейтнер всю жизнь встречала снисходительность и даже презрение со стороны коллег-мужчин и страдала от преследований нацистов. Ее сотрудничество с немецким химиком Отто Ганом продолжалось более трех десятилетий и увенчалось открытием нового элемента — протактиния — и доказательством возможности расщепления ядра. Однако, несмотря на этот вклад, Мейтнер было отказано в Нобелевской премии. Она всегда отстаивала необходимость мирного использования ядерной энергии, в изучении которой сыграла столь заметную роль.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.