Двигатели жизни. Как бактерии сделали наш мир обитаемым - [28]
Однако что же происходит с протонами после того, как они проходят через фактор сопряжения и оказываются по другую сторону мембраны? Они встречаются с электронами, одновременно связываясь с другой модифицированной нуклеиновой кислотой. Эта молекула носит неблагозвучное имя никотинамидадениндинуклеотидфосфат, или НАДФ. Когда к НАДФ добавляются протон и электрон, молекула восстанавливается до НАДФН. Функция НАДФН заключается в том, чтобы транспортировать водород внутри клетки с целью его использования для производства органических соединений. Этот процесс может показаться чрезмерно усложненным, однако если бы клетка вырабатывала водород в свободном виде, этот газ, молекулы которого физически очень малы, мог бы с легкостью покинуть клетку. Путем разделения двух составляющих водорода – электрона и протона – и затем воссоединения их в составе такой крупной молекулы, как НАДФ, клетка может удерживать водород при себе. В фотосинтезирующих организмах атомы водорода, прикрепленные к НАДФН, в конечном счете используются для преобразования углекислого газа (CO2) в сахара, которые большинство прочих живых существ на этой планете используют для того, чтобы получать энергию.
Хотя это потребовало немалого терпения и некоторого везения, однако кристаллическая структура реакционного центра фотосинтезирующей бактерии, не расщепляющей воду, наконец была исследована тремя немецкими биохимиками: Хартмутом Михелем, Иоганном Дайзенхофером и Робертом Хубером. Результаты их работы, опубликованные в 1985 году в английском журнале Nature, ясно показали, как ядро из трех белков в сердцевине реакционного центра удерживает бактериальный хлорофилл и другие молекулы, образуя действующий наномеханизм. В 1988 году ученые получили Нобелевскую премию по химии. Несколько лет спустя были описаны также и кристаллические структуры реакционных центров, расщепляющих воду; сначала это сделала еще одна группа немецких исследователей, а позднее – несколько ученых в других странах. Мы можем видеть отдельные части механизма, но, к несчастью, не можем наблюдать их за работой – пока. Рентгеноскопические анализы не показывают фильм о действии этих механизмов, они могут дать только отдельные кадры. Они запечатлевают механизм в одном конкретном состоянии, но не раскрывают его движение, то, как он функционирует. Однако хотя этот недостаток и препятствует полному пониманию того, как в точности действуют реакционные центры, мы уже прошли немалый путь к осознанию механизма использования световой энергии для расщепления воды и производства кислорода.
Реакционные центры – это нечто особенное: когда они работают, весь наномеханизм превращается в буквальном смысле в микроскопическое светомузыкальное представление. Вспомним, что энергия света проталкивает электрон, взятый у молекулы хлорофилла с донорской стороны белкового комплекса, на акцепторную сторону. В результате на миллиардную долю секунды положительно заряженная молекула и отрицательно заряженная молекула оказываются внутри белкового каркаса, и их разделяет всего лишь миллиардная доля метра. Положительный заряд притягивает отрицательный заряд. Под действием силы притяжения зарядов белковый каркас слегка проседает, и при этом возникает волна сжатия. Такая волна сжатия аналогична хлопку ладоней; каждый раз, когда реакционный центр передвигает электрон, он издает микроскопический хлопок – звук, который в буквальном смысле может быть услышан при помощи очень чувствительного микрофона. Этот феномен, называемый фотоакустическим эффектом, был обнаружен Александром Грэмом Беллом, изобретателем телефона. В 1880 году он использовал этот эффект для генерирования звуковых волн из света и построил специальный аппарат, фотофон, для передачи такого звука. Кто знал, что этот феномен может быть использован для того, чтобы слушать звуки механизмов фотосинтезирующих организмов, выталкивающих электроны? Вместе с моими коллегами и давними друзьями (Дэвидом Мозероллом из Рокфеллеровского университета, Цви Дубински из университета Бар-Илана и Максимом Горбуновым из моей лаборатории) мы разработали прибор для измерения звука, издаваемого фотосинтетическим аппаратом живой клетки. Проведенный нами анализ этих звуков показал, что приблизительно 50 % световой энергии преобразуется в реакционных центрах в электрическую.
Однако существует и другой сигнал, показывающий, как действуют фотосинтетические реакционные центры. Помимо прочего, эти реакционные центры меняют свои флюоресцентные характеристики. Под воздействием синего света хлорофилл испускает красное свечение в процессе флюоресценции. Мы можем наблюдать такое свечение в флюоресцентных красках, на собственных зубах или на модных сейчас футболках, когда нас освещают ультрафиолетовым светом. Однако в фотосинтезирующих организмах интенсивность флюоресцентного красного свечения возрастает, когда все большее число реакционных центров включаются в работу. Коротко говоря, когда водоросли или листья находятся в темноте и затем подвергаются освещению синим светом, интенсивность испускаемого красного флюоресцентного свечения возрастает с большой скоростью. Об этом феномене впервые сообщили в 1931 году двое немецких химиков, Ханс Каутский и А. Хирш, наблюдавшие этот эффект невооруженным глазом. На протяжении последующих семидесяти лет было показано, что этот феномен может использоваться как количественный показатель того, сколько работы производят реакционные центры. В связи с этим он на настоящий момент регулярно замеряется во всем мире при помощи чувствительной аппаратуры для изучения того, сколько солнечного света фотосинтезирующие организмы преобразуют в полезную энергию. Я также на протяжении многих лет своей научной деятельности применял этот метод для исследования эффективности фотосинтетического преобразования энергии в Мировом океане. Собственно говоря, инструменты именно такого типа – способные измерять флюоресцентное свечение – я и брал с собой на Черное море, чтобы изучать фотосинтетические реакции в океанах.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.