Для юных математиков. Веселые задачи - [4]
«6 – G» означает: автомобиль № 6 становится в отделение G, и т. п.
Решение задачи № 4Три непересекающиеся пути показаны на этом чертеже:
Петру и Павлу приходится идти довольно извилистыми путями, – но зато братья избегают нежелательных встреч между собой. Решение задачи № 5
Стрелки на рисунке показывают, какие мухи переменили место и с каких клеток oни пересели.
Решение задачи № 6
Забор можно построить двояко. Вот чертежи, показывающие направление ограды.
Забор, построенный по второму плану, короче и, следовательно, дешевле.
Решение задачи № 7
Вот единственное расположение, при котором два дома безопасны от нападения извне.
Вы видите, что 10 до мов расположены здесь, как требовалось в задаче: по 4 на каждой из пяти прямых стен. Решение задачи № 8
Деревья, оставшиеся несрубленными, были расположены так (рис. 15):
Как видите, они образуют 5 прямых рядов, и в каждом ряду 4 дерева. Решение задачи № 9
Кошка должна съесть первой ту мышь, которая находится на нашем рисунке у копчика ее хвоста.
Попробуйте, начав с этой мыши счет по кругу, зачеркивать каждую 13-ю мышь, – вы убедитесь, что белая мышь будет зачеркнута последней.
Решение задачи № 10На чертеже показано, как надо сложить из 18 спичек два четырехугольника, чтобы один был втрое больше другого по площади. Вторым четырехугольником является параллелограмм с высотою, равною 1 1/2 спичкам. Площадь параллелограмма равна его основанию, умноженному на его высоту. В основании нашего параллелограмма лежат 4 спички, высота же равна 1 1/2спичкам; следовательно, площадь равна 4 x 11/2, т. е. 6таким квадратикам, каких в меньшем четырехугольнике 2. Итак, нижний четырехугольник имеет площадь втрое большую, нежели верхний.
Глава II Десять легких задач
ЗАДАЧА № 11
Бочки
В магазин доставили 6бочек керосину. На этом рисунке обозначено, сколько ведер было в каждой бочке. В первый же день нашлось два покупателя; один купил целиком две бочки, другой – три, причем первый купил вдвое менее керосина, чем второй. Не пришлось даже раскупоривать бочек.
Рис. 17.
И тогда на складе из 6 бочек осталась всего одна. Какая? ЗАДАЧА № 12 До половины
В бочке налита вода, по-видимому, до половины. Но вы хотите узнать точно, половина ли в ней налита, или больше половины, или же меньше половины. У вас нет ни палки, ни вообще инструмента для обмера бочки. Втулки бочка не имеет. Каким образом могли бы вы убедиться, налита ли вода ровно до половины?
ЗАДАЧА № 13 Невозможное равенствоКстати, о полупустой бочке. Полупустая бочка – это ведь то же, что и полуполная. Но если половины равны, то должны быть равны и целые. Полупустая бочка равна полуполной, – значит, пустая бочка должна равняться полной. Выходит, что пустой равен полному!
Почему получился такой несообразный вывод?
ЗАДАЧА № 14 Число волосКак вы думаете: существует ли на свете два человека с одинаковым числом волос?
Вы ответите, пожалуй, что два совершенно лысых человека имеют волос поровну, потому что и у того и у другого ноль волос.
Это, если хотите, правильно.
Но я спрашиваю не о безволосых людях, а о таких, у которых имеются на голове густые волосы. Найдется ли в мире два человека, у которых число волос на голове было бы в точности одинаково?
А может быть, двое таких людей отыщутся в Ленинграде или Москве?
ЗАДАЧА № 15 Цена переплетаКнига в переплете стоит 2 руб. 50 коп. Книга на 2 рубля дороже переплета. Сколько стоит переплет?
ЗАДАЧА № 16 Цена книгиИванов приобретает все нужные ему книги у знакомого ему книгопродавца со скидкою в 20 процентом. С 1-го января цены всех книг повышены на 20 процентов. Иванов решил, что он будет теперь платить за книги столько, сколько остальные покупатели платили до 1-го января. Прав ли он?
ЗАДАЧА № 17 Головы и ногиНа лугу паслись лошади под надзором кучеров. Если бы вы пожелали сосчитать, сколько всех ног на лугу, то насчитали бы 82 ноги. А если бы пересчитали головы, то оказалось бы, что всех голов – лошадиных и человеческих – 26.
Сколько было лошадей и сколько кучеров?
Надо заметить, что ни безногих лошадей, ни калек-кучеров на лугу не было.
ЗАДАЧА № 18 На счётахВы, без сомнения, умеете считать на конторских счётах и понимаете, что отложить на них 25 рублей – задача очень легкая.
Но задача станет замысловатее, если вам поставят условие: сделать это так, чтобы отодвинуть не 7 косточек, как обыкновенно, а 25 косточек.
Попробуйте, в самом деле, показать на конторских счётах сумму в 25 рублей, отложив ровно 25 косточек.
Конечно, на практике так никогда не делается, но задача все же разрешима, и ответ довольно любопытен.
ЗАДАЧА № 19 Редкая монетаСобирателю редкостей сообщили, что в Риме при раскопках найдена монета с надписью по-латыни:
55-й год до Р. X.
– Монета, конечно, поддельная, – ответил собиратель.
Как мог он знать это, не видя ни самой монеты, ни даже ее изображения?
ЗАДАЧА № 20 СпаржаЖенщина обыкновенно покупает у зеленщика спаржу большими пучками, каждый 40 сантиметров в окружности. Покупая, она мерит их, чтобы убедиться, что ее не обманывают. Но однажды у торговца не оказалось 40-сантиметрового пучка и он предложил покупательнице за те же деньги два тонких пучка, каждый по 20 сантиметров в обхвате.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
Как помочь ребенку полюбить математику? Эта книга поможет вам и вашим детям взглянуть по-новому на изучение математики, закрыть пробелы в знаниях и превратить учёбу в удовольствие.
Математика может учить логике только тогда, когда преподавание включает творческий подход к решению интересных задач. Эта книга для тех, кто хочет обучать математике так, чтобы у учеников горели глаза.
Диалоги о математике, предлагаемые вниманию советских читателей, первоначально опубликованные в некоторых физических и философских журналах, впоследствии составили книжку, изданную на венгерском, немецком, английском и других европейских языках. И статьи и сборник вызвали большой интерес среди широких кругов читателей не только благодаря оригинальной форме изложения, но и вследствие довольно глубокой трактовки методологических вопросов математики. Книгу читали не только математики, физики, биологи, инженеры, но и школьники.