Дикие гены - [9]

Шрифт
Интервал

Долгое время было неясно, развивались ли самые разнообразные типы глаз – от фасеточных у мух до громадного глаза гигантского кальмара диаметром 27 см – совершенно независимо друг от друга или у них был какой-то общий предшественник. Однако тот факт, что развитие глаз у разных видов живых организмов управляется очень схожими группами генов, позволяет говорить об общности происхождения.

Итак, мы преодолеваем последние ступени, спускаемся на нижний этаж (уже без глаз) в виде мифического самого первого одноклеточного организма и останавливаемся перед дверью, ведущей наружу. Она является разделительной чертой между живой и мертвой материей (так сказать, между жизнью и смертью). Там, за дверью, те же химические элементы, из которых построено все на свете. Но скачок между этими элементами и одноклеточным организмом поистине колоссален. Существуют ли какие-то промежуточные ступени?

Над вопросом возникновения жизни ломал голову еще Чарлз Дарвин. Первого февраля 1871 года он так описывал ход своих мыслей одному из друзей: в самом начале на пока еще мертвой Земле появился «небольшой теплый пруд», в котором простые химические соединения под действием света, тепла, электричества и других факторов соединились, образовав первую жизненную форму. Однако уже вскоре он отказался от этой идеи и написал, что все это чушь и что на данном этапе развития науки не имеет смысла всерьез размышлять об истоках жизни.

Даже почти сто лет спустя, когда наши познания в биологии существенно углубились, этот момент по-прежнему оставался загадкой. Что было ступенью, непосредственно предшествовавшей жизни? Она еще не могла быть столь сложной, как собственно жизнь, строящаяся на ДНК, РНК и белках, но все же должна была обладать способностью к размножению и развитию. Базовое построение клетки представляет собой настоящий гордиев узел. Для размножения ДНК клетке требуются РНК и белки. Чтобы производить белки, нужны ДНК и РНК. А РНК создается при считывании информации с ДНК с помощью белковых механизмов. И все это находится в неразрывной связи. Ни одно из звеньев не может быть опущено. Где же искать начало этого круговорота?

Решающим шагом к развязыванию узла стало исследование группы коротких молекул транспортных РНК, или тРНК. Эти молекулы играют крайне важную роль в синтезе белков. Они располагают нужными аминокислотами и могут распознавать кодоны мРНК. Это делает их центральными промежуточными элементами между генетическим кодом и белком. Такая их способность объясняется специфической структурой. Они состоят из одной нити, которая складывается таким образом, что отдельные участки РНК соединяются сами с собой, образуя короткие двойные нити. Благодаря этому осуществляется фиксация тРНК в сложной трехмерной форме с удвоением некоторых участков. Поэтому молекулы тРНК выглядят совершенно не так, как монотонная правильная двойная спираль ДНК. Фрэнсис Крик, считающийся открывателем двойной спирали, придал этой структуре огромное значение: «Молекула тРНК выглядит так, словно природа пытается возложить на нее задачи, присущие белкам!» Таким образом, тРНК стала доказательством того, что РНК не довольствуется ролью чистого передатчика информации. Благодаря перекрещиванию нити она, подобно белку, образует особые структуры и берет на себя активные функции.

Эти наблюдения стали источником вдохновения для трех ученых. В 1967–1968 годах они независимо друг от друга высказали идею, позволяющую разрешить проблему. Это были Фрэнсис Крик, американец Карл Вёзе (с ним мы подробнее познакомимся в 4-й главе) и англичанин Лесли Илизер Орджел. Орджел, являвшийся, между прочим, одним из участников «Клуба галстуков РНК», был ученым до мозга костей. Любовь к химии проявилась у него еще в подростковом возрасте, когда Лесли увлеченно изготавливал взрывчатку и применял ее на практике… Поэтому, если малолетняя шпана пытается взорвать ваш гараж, подумайте о том, что вы, возможно, имеете дело с научной элитой завтрашнего дня!

Исходя из свойств тРНК, все трое предположили, что в прошлом мог существовать такой механизм синтеза белков, при котором не требовалось брать за основу уже существующий белок. Для образца использовалась мРНК, в качестве передатчика кода выступала тРНК, а машина РНК производила белок. У сегодняшних живых организмов (это было известно уже в то время) такой машиной является рибосома – большой белковый комплекс, содержащий встроенные нити РНК, так называемые рибосомные РНК, или рРНК. Может, это реликт прежних времен?

Но раз уж ученые зашли в своих предположениях так далеко, то эту идею можно довести до логического конца: если для производства первых белков требовалась только РНК, следовательно, РНК появилась раньше белка. А поскольку РНК может одновременно выступать в роли носителя информации и активной синтезирующей структуры, то она древнее ДНК. Короче говоря, был сделан вывод о том, что в неразрывной на первый взгляд троице первой появилась РНК!

Идея была очень привлекательной, но недостаточно обоснованной. В конце концов, она строилась лишь на предположении, что РНК в состоянии выполнять функцию энзима. К сожалению, все известные на тот момент энзимы были белками. И даже если сам мистер Крик считал, что молекула тРНК выглядит как молекула белка, это еще не могло считаться доказательством. Нобелевская премия за двойную спираль была тут слабым аргументом.


Рекомендуем почитать
Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Бумага. О самом хрупком и вечном материале

Попробуйте представить мир без бумаги. Что нам останется? Да почти ничего. Бумага с нами везде. Книги, письма, дневники, а еще картонные подставки под пиво, свидетельства о рождении, настольные игры и визитные карточки, фотографии, билеты, чайные пакетики. Мы — люди бумаги. Но эпоха бумаги подходит к концу. Электронные книги и билеты заменяют бумажные, архивы оцифровывают. Мы вступаем в мир без бумаги, но Иэн Сэнсом рассказывает об этом самом парадоксальном из созданных человеком материале и доказывает, что в том или ином виде он всегда будет с нами.


Десять самых красивых экспериментов в истории науки

В наше время научные открытия совершатся большими коллективами ученых, но не так давно все было иначе. В истории навсегда остались звездные часы, когда ученые, задавая вопросы природе, получали ответы, ставя эксперимент в одиночку.Джордж Джонсон, замечательный популяризатор науки, рассказывает, как во время опытов по гравитации Галилео Галилей пел песни, отмеряя промежутки времени, Уильям Гарвей перевязывал руку, наблюдая ход крови по артериям и венам, а Иван Павлов заставлял подопытных собак истекать слюной при ударе тока.Перевод опубликован с согласия Alfred A, Knopf, филиала издательской группы Random House, Inc.


Безопасность жизнедеятельности. Шпаргалка

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать. Пособие предназначено для студентов высших и средних образовательных учреждений.