Девятый знак - [53]
Рений — один из самых тугоплавких металлов. Сейчас, когда с высокими температурами приходится сталкиваться во многих областях науки и техники и, прежде всего, в ракетной авиации, это свойство рения является исключительно ценным. Только один металл плавится при более высокой температуре, чем рений. Это вольфрам. Но и 3200° — температура плавления рения — величина достаточно внушительная.
Вторым ценным свойством рения является его химическая инертность. Даже при полутора тысячах градусов он не соединяется с кислородом воздуха. При обычных же температурах он не изменяется совершенно. Блестящая пластинка из рения не тускнеет практически вечно. Легко представить, какое применение найдет этот металл для отделки автомобилей и самолетов.
Большинство кислот не оказывает на рений никакого действия. Он сохраняет «невозмутимость» даже при обливании его горячей плавиковой кислотой, которая славится своей агрессивностью. Поэтому самая небольшая добавка рения делает многие сплавы кислотоупорными. Химическая аппаратура из сплавов рения служит в десятки раз дольше, чем агрегаты, сконструированные из обычных сплавов.
Не надо быть особенным пророком, чтобы предсказать, что в самом недалеком будущем рений вытеснит вольфрам во многих областях техники. Дело прежде всего в том, что при высоких температурах рений обладает большей прочностью, чем вольфрам. Поэтому уже сейчас в наиболее ответственных машинах поверхности трущихся деталей, если при трении возникает высокая температура, покрывают рением. Ко всему следует добавить, что рений очень легко и хорошо образует электролитические покрытия, а это в высшей степени ценное свойство этого элемента.
Итак, одна область применения рения заключается в использовании его отличных механических качеств и химической инертности. Но насколько рений инертен в реакциях со многими веществами, настолько он активен в вызывании реакций посторонних веществ. Иными словами, рений оказался прекрасным катализатором многих важных химических реакций. Рений — катализатор. Такова вторая широкая область применения этого металла будущего.
Уже через несколько лет после открытия рения стало известно, что он катализирует реакцию взаимодействия углекислого газа с водородом. Продуктом реакции при этом является метан. Трудно переоценить значение этой реакции. Метан — прекрасное горючее, легко транспортируемое, высококалорийное, не коптящее и не дымящее. Но самое главное, что метан можег служить источником множества химических продуктов, которые получаются на его основе. Углекислый же газ и водород — побочные продукты многих производств. При сгорании угля и нефти в воздух выделяются сотни тысяч тонн углекислоты в сутки. Водород тоже образуется как побочный и даже вредный продукт при электролитическом получении кислорода и многих металлов.
Рений позволяет легко и просто превратить эти отбросы производства в ценнейшее сырье для народного хозяйства нашей страны. Окислы рения, как выяснилось, отлично катализируют такой важный для химической технологии процесс, как окисление кислородом воздуха сернистого газа. Ведь на этой реакции основан процесс получения серной кислоты.
Итак, ясно — будущее за рением. Но основная задача внедрения этого металла в будни советской промышленности пока еще остается нерешенной. Необходимо найти методы быстрого и дешевого извлечения рения из содержащих его руд. Задача эта трудна, но выполнение ее столько сулит народному хозяйству нашей страны, что тот из химиков, кто посвятит себя ее решению, может быть горд сознанием важности выполняемого им дела.
Основа века атома
Когда-нибудь соберут в одном зале всех тех, кто пишет научно-популярные книги по химии, и предложат каждому из нас написать книгу, посвященную какому-либо из элементов. Один возьмется написать об йоде, другой посвятит свою книгу железу, третий — натрию. Это будут очень интересные книги, потому что о любом из элементов можно сказать много-много поучительного. Что же касается меня, то я бы, конечно, назвал уран.
Очень увлекательно было бы писать об этом элементе, потому что история урана по своей занимательности оставляет далеко позади описания похождений отважного д’Артаньяна и наверняка гораздо поучительнее.
Весьма заманчиво сравнить уран с гадким утенком, развившимся в прекрасного лебедя, но это будет малоемкое сравнение. Потому что андерсеновский гадкий утенок куда ближе великолепному лебедю, чем уран XIX века урану XX века. Можно было бы, правда, сказать, что уран за 150 лет после его открытия сделал головокружительную карьеру от элемента, свойства которого известны лишь узким специалистам, до элемента, которым интересуются все. Но и это сравнение, как будет видно из дальнейшего, мало освещает положение дел.
3∙10>–6. Три десятитысячных доли процента. Три грамма на тонну. Таково среднее содержание урана в земной коре. В два раза меньше, чем самария, в три раза меньше, чем гадолиния, в десять раз меньше, чем олова. Мало, очень мало.
Можно считать большой удачей, что химик Клапрот в 1789 году открыл этот элемент. «Рождение» оказалось вне всякого сомнения преждевременным. Начался XIX век, прошла большая его часть, а ученые все еще не знали, что делать им с ураном и на что можно его употребить. Соединения этого элемента можно было, правда, встретить в лабораториях очень уж дотошных фотографов. В старых руководствах сообщается, что уран применяли иногда в керамической промышленности и в производстве краски «урановая желтая», но писали об этом, по-видимому, скорее для того, что ничего другого о применении урана сказать было нельзя. А краски этой, может быть, и приготовили за все время десяток-другой тонн.
Книга эта о радиоактивности. Той самой радиоактивности, которая была открыта на рубеже XIX и XX веков и которая во многом определила развитие не только физики, но и всех иных разделов естествознания.Без малого два десятилетия назад автор уже написал книгу о том, как явление радиоактивности послужило химии и геологии, медицине и археологии, биологии и космогонии («Ядро — выстрел!», издательство «Детская литература», 1966 г.). Но события в науке в наше время развиваются стремительно. Вот почему автору свою прежнюю книгу пришлось существенно переработать и дать ей другое название.
Данная книга уже много лет, как стала классикой у байдарочников, причем люди, далекие от водного туризма ее тоже читают с удовольствием.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.